Suppr超能文献

通过纳米级弹性框架涂层增强锂离子电池阴极的机械韧性

Enhancing Mechanical Resilience in Li-Ion Battery Cathodes with Nanoscale Elastic Framework Coatings.

作者信息

Lim Jong-Heon, Kim Jaehyun, Oh Jiwoong, Kwon Jaesub, Lee Kyoung Eun, Lee Youngsu, Park Seongeun, Lim Jun, Shin Dongwook, Jo Changshin, Kim Yong-Tae, Moon Janghyuk, Hersam Mark C, Park Kyu-Young

机构信息

Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.

Department of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

ACS Nano. 2025 Jan 14;19(1):1588-1599. doi: 10.1021/acsnano.4c14980. Epub 2025 Jan 3.

Abstract

Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.5 wt %, effectively mitigating critical issues such as particle cracking, volume changes, and electrode thickness variations during cycling. Leveraging these advantages, an energy-dense electrode is achieved with a high active material loading of 20 mg cm, without the need for additional carbon additives. Demonstrated in a pouch cell format, this electrode achieves an exceptional capacity retention of 77.7% after 1000 cycles. This approach provides a comprehensive solution for designing Li-ion batteries capable of withstanding lattice volume variations, offering valuable insights for next-generation batteries technologies.

摘要

锂离子电池活性材料在电化学循环过程中晶格体积变化不可避免,这在从颗粒到电极层面都带来了重大的工程挑战。在本研究中,我们提出了一种弹性框架涂层,旨在吸收并可逆地释放与颗粒体积变化相关的应变能,从而在颗粒和电极层面增强机械弹性。该框架由多壁碳纳米管(MWCNTs)组成,以0.5 wt%的低负载量应用于富镍LiNiCoMnO(NCM9055)阴极,有效缓解了循环过程中的颗粒开裂、体积变化和电极厚度变化等关键问题。利用这些优势,在不使用额外碳添加剂的情况下,实现了活性材料高负载量为20 mg/cm²的能量密集型电极。以软包电池形式展示,该电极在1000次循环后实现了77.7%的出色容量保持率。这种方法为设计能够承受晶格体积变化的锂离子电池提供了全面的解决方案,为下一代电池技术提供了有价值的见解。

相似文献

引用本文的文献

本文引用的文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验