Suppr超能文献

PmiR-Select——一种在基因组中识别植物前体微小RNA的计算方法。

PmiR-Select - a computational approach to plant pre-miRNA identification in genomes.

作者信息

Bambil Deborah, Costa Mirele, Alencar Figueiredo Lúcio Flávio de

机构信息

Department of Cell Biology, Biology Institute, University of Brasília (UnB), Brasília, DF, 70910-900, Brazil.

Federal Institute of Brasília (IFB), Brasília, DF, 70830-450, Brazil.

出版信息

Mol Genet Genomics. 2025 Jan 3;300(1):12. doi: 10.1007/s00438-024-02221-7.

Abstract

Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase. The second filter reduced pre-miRNAs by 7% (from 8677 to 8045) through length limit to pre-miRNAs (70-300 nt) and miRNAs (20-24 nt). The 80% redundancy threshold was statistically the best, eliminating 55% pre-miRNAs (from 8045 to 3608). Angiosperms retained the highest number of pre-miRNAs and their families (2981 and 2202), followed by gymnosperms (362 and 271), bryophytes (183 and 119), and algae (82 and 78). Thirty-seven conserved pre-miRNA families happened among plant land clades, but none with algae. The PmiR-Select was applied to the rice genome, producing 8536 pre-miRNAs from 36 families. The 80% redundancy threshold retained 3% pre-miRNAs (n = 264) from 36 families, valuable experimental and computational research resources. 14% (n = 1216) of 8536 were new pre-miRNAs from 19 new families in rice. Only 16 new sequences from six families overlapped (39 to 54% identities) with rice pre-miRNAs and five species on miRBase. The validation against mature miRNAs identified 8086 pre-miRNAs from 13 families. Eleven ones have already been recorded, but two new and abundant pre-miRNAs [miR437 (n = 296) and miR1435 (n = 725)] scattered in all 12-rice chromosomes. PmiR-Select identified pre-miRNAs, decreased the redundancy, and discovered new miRNAs. These findings pave the way to delineating benchtop and computational experiments.

摘要

微小RNA前体(pre-miRNA)在计算机挖掘微小RNA中的应用较少。本研究基于协方差模型(CM)开发了PmiR-Select,以识别新的pre-miRNA,检测RNA序列中的保守二级结构特征并消除冗余。PmiR-Select之前的流程从miRBase中筛选出了20%的植物pre-miRNA(从38589个减少到8677个)。第二次筛选通过将pre-miRNA(70 - 300 nt)和微小RNA(20 - 24 nt)的长度限制,使pre-miRNA减少了7%(从8677个减少到8045个)。80%的冗余阈值在统计学上是最佳的,消除了55%的pre-miRNA(从8045个减少到3608个)。被子植物保留的pre-miRNA及其家族数量最多(2981个和2202个),其次是裸子植物(362个和271个)、苔藓植物(183个和119个)和藻类(82个和78个)。37个保守的pre-miRNA家族出现在陆地植物分支中,但藻类中没有。PmiR-Select应用于水稻基因组,产生了来自36个家族的8536个pre-miRNA。80%的冗余阈值保留了来自36个家族的3%的pre-miRNA(n = 264),这是有价值的实验和计算研究资源。8536个中的14%(n = 1216)是来自水稻中19个新家族的新pre-miRNA。在miRBase上,只有来自6个家族的16个新序列与水稻pre-miRNA和5个物种重叠(同一性为39%至54%)。针对成熟微小RNA的验证确定了来自13个家族的8086个pre-miRNA。其中11个已经有记录,但有两个新的且丰富的pre-miRNA [miR437(n = 296)和miR1435(n = 725)]分散在水稻的所有12条染色体上。PmiR-Select识别出了pre-miRNA,减少了冗余,并发现了新的微小RNA。这些发现为开展实验台和计算机实验铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验