Suppr超能文献

通过统计边缘滤波进行骨干提取:一项比较研究。

Backbone extraction through statistical edge filtering: A comparative study.

作者信息

Yassin Ali, Cherifi Hocine, Seba Hamida, Togni Olivier

机构信息

LIB, Université de Bourgogne, Franche-Comté, Dijon, France.

UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, Univ Lyon, Villeurbanne, France.

出版信息

PLoS One. 2025 Jan 3;20(1):e0316141. doi: 10.1371/journal.pone.0316141. eCollection 2025.

Abstract

The backbone extraction process is pivotal in expediting analysis and enhancing visualization in network applications. This study systematically compares seven influential statistical hypothesis-testing backbone edge filtering methods (Disparity Filter (DF), Polya Urn Filter (PF), Marginal Likelihood Filter (MLF), Noise Corrected (NC), Enhanced Configuration Model Filter (ECM), Global Statistical Significance Filter (GloSS), and Locally Adaptive Network Sparsification Filter (LANS)) across diverse networks. A similarity analysis reveals that backbones extracted with the ECM and DF filters exhibit minimal overlap with backbones derived from their alternatives. Interestingly, ordering the other methods from GloSS to NC, PF, LANS, and MLF, we observe that each method's output encapsulates the backbone of the previous one. Correlation analysis between edge features (weight, degree, betweenness) and the test significance level reveals that the DF and LANS filters favor high-weighted edges while ECM assigns them lower significance to edges with high degrees. Furthermore, the results suggest a limited influence of the edge betweenness on the filtering process. The backbones global properties analysis (edge fraction, node fraction, weight fraction, weight entropy, reachability, number of components, and transitivity) identifies three typical behavior types for each property. Notably, the LANS filter preserves all nodes and weight entropy. In contrast, DF, PF, ECM, and GloSS significantly reduce network size. The MLF, NC, and ECM filters preserve network connectivity and weight entropy. Distribution analysis highlights the PU filter's ability to capture the original weight distribution. NC filter closely exhibits a similar capability. NC and MLF filters excel for degree distribution. These insights offer valuable guidance for selecting appropriate backbone extraction methods based on specific properties.

摘要

骨干提取过程对于加快网络应用中的分析和增强可视化至关重要。本研究系统地比较了七种有影响力的统计假设检验骨干边过滤方法(差异过滤器(DF)、波利亚瓮过滤器(PF)、边际似然过滤器(MLF)、噪声校正(NC)、增强配置模型过滤器(ECM)、全局统计显著性过滤器(GloSS)和局部自适应网络稀疏化过滤器(LANS))在不同网络中的表现。相似性分析表明,使用ECM和DF过滤器提取的骨干与从其他替代方法派生的骨干重叠最小。有趣的是,将其他方法从GloSS到NC、PF、LANS和MLF排序,我们观察到每种方法的输出都包含了前一种方法的骨干。边特征(权重、度、介数)与测试显著性水平之间的相关性分析表明,DF和LANS过滤器倾向于高权重边,而ECM对高度边赋予较低的显著性。此外,结果表明边介数对过滤过程的影响有限。骨干全局属性分析(边分数、节点分数、权重分数、权重熵、可达性、组件数量和传递性)为每个属性确定了三种典型行为类型。值得注意的是,LANS过滤器保留了所有节点和权重熵。相比之下,DF、PF、ECM和GloSS显著减小了网络规模。MLF、NC和ECM过滤器保留了网络连通性和权重熵。分布分析突出了PU过滤器捕获原始权重分布的能力。NC过滤器也表现出类似的能力。NC和MLF过滤器在度分布方面表现出色。这些见解为根据特定属性选择合适的骨干提取方法提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2627/11698430/ca033636ef29/pone.0316141.g001.jpg

相似文献

1
Backbone extraction through statistical edge filtering: A comparative study.
PLoS One. 2025 Jan 3;20(1):e0316141. doi: 10.1371/journal.pone.0316141. eCollection 2025.
2
Unwinding the hairball graph: Pruning algorithms for weighted complex networks.
Phys Rev E. 2016 Jan;93(1):012304. doi: 10.1103/PhysRevE.93.012304. Epub 2016 Jan 11.
3
Extracting backbones in weighted modular complex networks.
Sci Rep. 2020 Sep 23;10(1):15539. doi: 10.1038/s41598-020-71876-0.
4
Information filtering in complex weighted networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046101. doi: 10.1103/PhysRevE.83.046101. Epub 2011 Apr 1.
5
[Progress in filters for denoising cryo-electron microscopy images].
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.
6
Image filtering for improved dose resolution in CT polymer gel dosimetry.
Med Phys. 2004 Jan;31(1):39-49. doi: 10.1118/1.1633106.
7
Weighted Guided Image Filtering with Steering Kernel.
IEEE Trans Image Process. 2019 Jul 19. doi: 10.1109/TIP.2019.2928631.
8
Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET.
EJNMMI Phys. 2024 Jul 9;11(1):58. doi: 10.1186/s40658-024-00661-z.
9
Range-limited centrality measures in complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066103. doi: 10.1103/PhysRevE.85.066103. Epub 2012 Jun 6.
10
Nonlinear multivariate image filtering techniques.
IEEE Trans Image Process. 1995;4(6):788-98. doi: 10.1109/83.388080.

引用本文的文献

1
Exploring weighted network backbone extraction: A comparative analysis of structural techniques.
PLoS One. 2025 May 20;20(5):e0322298. doi: 10.1371/journal.pone.0322298. eCollection 2025.

本文引用的文献

1
The distance backbone of complex networks.
J Complex Netw. 2021 Dec;9(6). doi: 10.1093/comnet/cnab021. Epub 2021 Oct 20.
2
An evaluation tool for backbone extraction techniques in weighted complex networks.
Sci Rep. 2023 Oct 9;13(1):17000. doi: 10.1038/s41598-023-42076-3.
3
Quantifying hierarchy and dynamics in US faculty hiring and retention.
Nature. 2022 Oct;610(7930):120-127. doi: 10.1038/s41586-022-05222-x. Epub 2022 Sep 21.
4
On network backbone extraction for modeling online collective behavior.
PLoS One. 2022 Sep 15;17(9):e0274218. doi: 10.1371/journal.pone.0274218. eCollection 2022.
5
Revealing the component structure of the world air transportation network.
Appl Netw Sci. 2021;6(1):92. doi: 10.1007/s41109-021-00430-2. Epub 2021 Nov 24.
6
Backbone: An R package for extracting the backbone of bipartite projections.
PLoS One. 2021 Jan 6;16(1):e0244363. doi: 10.1371/journal.pone.0244363. eCollection 2021.
7
Estimating international trade status of countries from global liner shipping networks.
R Soc Open Sci. 2020 Oct 14;7(10):200386. doi: 10.1098/rsos.200386. eCollection 2020 Oct.
8
Extracting backbones in weighted modular complex networks.
Sci Rep. 2020 Sep 23;10(1):15539. doi: 10.1038/s41598-020-71876-0.
9
The evolving structure of the Southeast Asian air transport network through the lens of complex networks, 1979-2012.
J Transp Geogr. 2018 Apr;68:67-77. doi: 10.1016/j.jtrangeo.2018.02.010. Epub 2018 Mar 2.
10
Whole-animal connectomes of both Caenorhabditis elegans sexes.
Nature. 2019 Jul;571(7763):63-71. doi: 10.1038/s41586-019-1352-7. Epub 2019 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验