Suppr超能文献

基于深度学习的双边滤波用于呼吸门控PET的边缘保持去噪

Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET.

作者信息

Maus Jens, Nikulin Pavel, Hofheinz Frank, Petr Jan, Braune Anja, Kotzerke Jörg, van den Hoff Jörg

机构信息

Department of Positron Emission Tomography, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01314, Dresden, Germany.

Klinik und Poliklinik für Nuklearmedizin, Universtitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany.

出版信息

EJNMMI Phys. 2024 Jul 9;11(1):58. doi: 10.1186/s40658-024-00661-z.

Abstract

BACKGROUND

Residual image noise is substantial in positron emission tomography (PET) and one of the factors limiting lesion detection, quantification, and overall image quality. Thus, improving noise reduction remains of considerable interest. This is especially true for respiratory-gated PET investigations. The only broadly used approach for noise reduction in PET imaging has been the application of low-pass filters, usually Gaussians, which however leads to loss of spatial resolution and increased partial volume effects affecting detectability of small lesions and quantitative data evaluation. The bilateral filter (BF) - a locally adaptive image filter - allows to reduce image noise while preserving well defined object edges but manual optimization of the filter parameters for a given PET scan can be tedious and time-consuming, hampering its clinical use. In this work we have investigated to what extent a suitable deep learning based approach can resolve this issue by training a suitable network with the target of reproducing the results of manually adjusted case-specific bilateral filtering.

METHODS

Altogether, 69 respiratory-gated clinical PET/CT scans with three different tracers ( FDG, L-DOPA, DOTATATE) were used for the present investigation. Prior to data processing, the gated data sets were split, resulting in a total of 552 single-gate image volumes. For each of these image volumes, four 3D ROIs were delineated: one ROI for image noise assessment and three ROIs for focal uptake (e.g. tumor lesions) measurements at different target/background contrast levels. An automated procedure was used to perform a brute force search of the two-dimensional BF parameter space for each data set to identify the "optimal" filter parameters to generate user-approved ground truth input data consisting of pairs of original and optimally BF filtered images. For reproducing the optimal BF filtering, we employed a modified 3D U-Net CNN incorporating residual learning principle. The network training and evaluation was performed using a 5-fold cross-validation scheme. The influence of filtering on lesion SUV quantification and image noise level was assessed by calculating absolute and fractional differences between the CNN, manual BF, or original (STD) data sets in the previously defined ROIs.

RESULTS

The automated procedure used for filter parameter determination chose adequate filter parameters for the majority of the data sets with only 19 patient data sets requiring manual tuning. Evaluation of the focal uptake ROIs revealed that CNN as well as BF based filtering essentially maintain the focal values of the unfiltered images with a low mean ± SD difference of = (-3.9 ± 5.2)% and = (-4.4 ± 5.3)%. Regarding relative performance of CNN versus BF, both methods lead to very similar values in the vast majority of cases with an overall average difference of = (0.5 ± 4.8)%. Evaluation of the noise properties showed that CNN filtering mostly satisfactorily reproduces the noise level and characteristics of BF with = (5.6 ± 10.5)%. No significant tracer dependent differences between CNN and BF were observed.

CONCLUSIONS

Our results show that a neural network based denoising can reproduce the results of a case by case optimized BF in a fully automated way. Apart from rare cases it led to images of practically identical quality regarding noise level, edge preservation, and signal recovery. We believe such a network might proof especially useful in the context of improved motion correction of respiratory-gated PET studies but could also help to establish BF-equivalent edge-preserving CNN filtering in clinical PET since it obviates time consuming manual BF parameter tuning.

摘要

背景

在正电子发射断层扫描(PET)中,残留图像噪声相当大,是限制病变检测、定量分析及整体图像质量的因素之一。因此,改进降噪方法仍备受关注。对于呼吸门控PET检查而言尤其如此。PET成像中唯一广泛使用的降噪方法是应用低通滤波器,通常是高斯滤波器,然而这会导致空间分辨率损失以及部分容积效应增加,影响小病变的可检测性和定量数据评估。双边滤波器(BF)——一种局部自适应图像滤波器——能够在保留清晰定义的物体边缘的同时降低图像噪声,但针对给定的PET扫描手动优化滤波器参数可能既繁琐又耗时,阻碍了其临床应用。在本研究中,我们探究了一种合适的基于深度学习的方法在多大程度上能够通过训练一个合适的网络来解决这一问题,该网络旨在重现手动调整的特定病例双边滤波的结果。

方法

本研究共使用了69例呼吸门控临床PET/CT扫描,包含三种不同的示踪剂(氟代脱氧葡萄糖、左旋多巴、奥曲肽)。在数据处理之前,对门控数据集进行分割,共得到552个单门控图像体积。对于这些图像体积中的每一个,划定了四个三维感兴趣区域(ROI):一个用于图像噪声评估的ROI,以及三个用于在不同目标/背景对比度水平下测量局灶性摄取(如肿瘤病变)的ROI。使用一种自动化程序对每个数据集进行二维BF参数空间的强力搜索,以确定“最佳”滤波器参数,从而生成由原始图像和经最佳BF滤波图像对组成的用户认可的地面真值输入数据。为了重现最佳BF滤波,我们采用了一种结合残差学习原理的改进型三维U-Net卷积神经网络(CNN)。使用五折交叉验证方案进行网络训练和评估。通过计算之前定义的ROI中CNN、手动BF或原始(STD)数据集之间的绝对差异和分数差异,评估滤波对病变SUV定量和图像噪声水平的影响。

结果

用于确定滤波器参数的自动化程序为大多数数据集选择了合适的滤波器参数,只有19个患者数据集需要手动调整。对局灶性摄取ROI的评估显示,基于CNN以及基于BF的滤波基本保持了未滤波图像中的局灶值,平均差异较低,分别为(-3.9±5.2)%和(-4.4±5.3)%。关于CNN与BF的相对性能,在绝大多数情况下,两种方法得到的结果非常相似,总体平均差异为(0.5±4.8)%。对噪声特性的评估表明,CNN滤波大多能令人满意地重现BF的噪声水平和特征,差异为(5.6±10.5)%。未观察到CNN和BF之间存在显著的示踪剂依赖性差异。

结论

我们的结果表明,基于神经网络的去噪能够以完全自动化的方式重现逐例优化的BF的结果。除了极少数情况外,在噪声水平、边缘保留和信号恢复方面,它生成的图像质量几乎相同。我们认为,这样的网络在改进呼吸门控PET研究的运动校正方面可能特别有用,而且由于它避免了耗时的手动BF参数调整,也有助于在临床PET中建立与BF等效的边缘保留CNN滤波。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bea9/11231129/629321c45561/40658_2024_661_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验