Zhu Yunfei, Wen Ya, Xie Yanping, Chen Guangfeng, Hu Siqi, Wu Yue, Jiang Lijun, Viana Bruno, Richard Cyrille, Wong Ka-Leung, Jiao Ju, Wang Jing, Zou Rui
Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3072-3083. doi: 10.1021/acsami.4c20023. Epub 2025 Jan 3.
Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS). In our design, mZGOCS@MnO-P5 enables primarily targeting of the EBV-specific oncoprotein LMP1 (an EBV-encoded transmembrane protein) via the LMP1 targeting motif within P5. Once internalized into cells, the MnO nanosheet would be degraded in the acidic and reducing tumor microenvironment, simultaneously releasing P5 and recovering the NIR-PL of ZnGaO:Cr, Sn initially quenched by the MnO nanosheet, thereby providing an autofluorescence interference-free NIR-PL imaging signal for monitoring the delivery efficacy of P5. The released P5 can secondarily target EBNA1 via the EBNA1 binding motif, blocking its function and thus inhibiting the growth of EBV-positive tumors. The feasibility of our developed hierarchical targeting theranostic nanosystem is well demonstrated both in vitro and in vivo, highlighting the huge translational potential of mZGOCS@MnO-P5 in EBV-associated cancer therapy.
爱泼斯坦-巴尔核抗原1(EBNA1)是爱泼斯坦-巴尔病毒(EBV)的一种序列特异性DNA结合蛋白,对病毒基因组的复制和维持至关重要,因此是EBV相关癌症治疗干预的一个有吸引力的靶点。几种EBNA1特异性抑制剂已在体外证明能够阻断EBNA1的功能,但这些抑制剂在体内的实际递送策略仍然缺乏。在此,我们报告了一种智能分级靶向诊疗纳米系统(称为mZGOCS@MnO-P5),它整合了叠氮化物(N3)末端双靶向肽(N3-P5)、肿瘤微环境响应性可降解MnO纳米片和介孔ZnGaO:Cr、Sn近红外持续发光(NIR-PL)纳米球(mZGOCS)。在我们的设计中,mZGOCS@MnO-P5主要通过P5内的LMP1靶向基序靶向EBV特异性癌蛋白LMP1(一种EBV编码的跨膜蛋白)。一旦内化进入细胞,MnO纳米片将在酸性和还原性肿瘤微环境中降解,同时释放P5并恢复最初被MnO纳米片淬灭的ZnGaO:Cr、Sn的NIR-PL,从而提供无自发荧光干扰的NIR-PL成像信号,用于监测P5的递送效果。释放的P5可以通过EBNA1结合基序二次靶向EBNA1,阻断其功能,从而抑制EBV阳性肿瘤的生长。我们开发的分级靶向诊疗纳米系统在体外和体内均得到了充分证明,突出了mZGOCS@MnO-P5在EBV相关癌症治疗中的巨大转化潜力。