Suppr超能文献

用于高效电容式储能的弛豫铁电陶瓷中的极涡旋

Polar Vortices in Relaxor Ferroelectric Ceramics for High-Efficiency Capacitive Energy Storage.

作者信息

Chen Fangling, Chen Mo, Zhang Jingji, Liu Weishen, Du Huiwei, Zong Quan, Yu Huanan, Zhang Yang, Hao Jigong, Wang Jiangying, Zhai Jiwei

机构信息

College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China.

College of Chemistry and Material Engineering, Chaohu University, Chaohu 238024, P. R. China.

出版信息

ACS Nano. 2025 Jan 14;19(1):1809-1818. doi: 10.1021/acsnano.4c16672. Epub 2025 Jan 3.

Abstract

Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.7NaNbO-0.3SrBiTiO matrix, yielding a coexistence of phases: 48.8% orthorhombic 2/, 49.1% tetragonal 4, and 2.1% tetragonal 4/ SnO, which is confirmed by the combination of X-ray diffraction and transmission electron microscopy. The ceramic features a pronounced core-shell structure with the shell region rich in stripe nanoscale domains of the 2/ phase and the core region consisting of polar nanoregions deficient in the 2/ phase, forming polar vortices. Consequently, the ceramic achieves an impressive recoverable energy storage density of 6.83 J cm and an exceptional efficiency of 95.7% at a high breakdown strength of 750 kV cm, along with superior stability in frequency, temperature, and cycling. These results not only offer a viable approach for developing high-performance energy storage ceramics through the controlled formation of polar vortices but also offer the potential for direct electric-field control of polar vortices for high-speed data processing and storage.

摘要

极性涡旋主要在受限的铁电薄膜和铁电/顺电超晶格中被观察到。这就引出了一个有趣的问题:极性涡旋是否能在弛豫铁电陶瓷中形成,并随后对其储能性能产生贡献。在此,我们将10摩尔%的CaSnO掺入0.7NaNbO - 0.3SrBiTiO基体中,得到了相的共存:48.8%的正交相2/、49.1%的四方相4和2.1%的四方相4/ SnO,这通过X射线衍射和透射电子显微镜的结合得以证实。该陶瓷具有明显的核壳结构,壳区域富含2/相的条纹纳米尺度畴,而核区域由缺乏2/相的极性纳米区域组成,形成了极性涡旋。因此,该陶瓷在750 kV/cm的高击穿强度下实现了令人印象深刻的6.83 J/cm³的可恢复储能密度和95.7%的优异效率,同时在频率、温度和循环方面具有卓越的稳定性。这些结果不仅为通过可控形成极性涡旋来开发高性能储能陶瓷提供了一种可行的方法,也为用于高速数据处理和存储的极性涡旋的直接电场控制提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验