Zhao Peng, Fang Zixuan, Zhang Xingchen, Chen Jingjing, Shen Yidi, Zhang Xing, An Qi, Yang Chengtao, Gao Xingsen, Zhang Shuren, Tang Bin
National Engineering Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 611731, China.
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24833-24855. doi: 10.1021/acsami.1c04274. Epub 2021 May 20.
SrBiTiO (SBT) is a promising pulse energy storage material due to minor hysteresis, but its low maximum polarization () is bad for energy storage. K-Bi defect pairs were introduced into the A-site of SBT to obtain SrBiKTiO (SBKT) with larger . Through first-principles calculations, we determined that the introduction of defect pairs destroys the paraelectric order phase and increases local polarization, resulting in more and larger polar nanoregion (PNR) formation. On this basis, doping NaNbO (NN) in A- and B-sites of SBKT increases the cationic disorder and ferroelectric destabilization, further destroying the long-range order structure and forming more PNRs with smaller sizes. This enhances relaxation and decreases remnant polarization, and the broadened dielectric peak enables 0.85SBKT-0.15NN to meet the X7R specification. Furthermore, the decreased grain size and oxygen vacancy, increased thermal conductivity, and weakened local electric field (simulated by COMSOL) increase the dielectric breakdown strength (BDS). As a result, 0.95SBKT-0.05NN exhibits a high energy storage density () of 2.45 J/cm with a high efficiency of 93.1%, a high pulsed discharge energy density of 2.1 J/cm, and a high power density of 54.1 MW/cm at 220 kV/cm. The energy storage properties show excellent stability of temperature (-55 to 150 °C), frequency (10-500 Hz), and cycling (10 cycles). Notably, for the pulse charge-discharge properties, 0.95SBKT-0.05NN shows great fatigue resistance during 10 cycles under 25 and 150 °C, accompanied by excellent thermal stability. Moreover, the BDS and of 0.95SBKT-0.05NN sintered in O further enhance. A higher of 2.92 J/cm with a high efficiency of 89% at 250 kV/cm is achieved. Therefore, 0.95SBKT-0.05NN shows great application potential for pulse energy storage. In this work, we provide a novel strategy and systematic in-depth study for improving the energy storage properties of SBT.
SrBiTiO(SBT)由于滞后较小,是一种很有前景的脉冲储能材料,但其较低的最大极化强度不利于能量存储。将K - Bi缺陷对引入SBT的A位,以获得具有更大极化强度的SrBiKTiO(SBKT)。通过第一性原理计算,我们确定缺陷对的引入破坏了顺电有序相并增加了局部极化,导致形成越来越多且尺寸更大的极化纳米区域(PNR)。在此基础上,在SBKT的A位和B位掺杂NaNbO(NN)增加了阳离子无序性和铁电失稳性,进一步破坏了长程有序结构并形成更多尺寸更小的PNR。这增强了弛豫并降低了剩余极化,展宽的介电峰使0.85SBKT - 0.15NN符合X7R规范。此外,减小的晶粒尺寸和氧空位、增加的热导率以及减弱的局部电场(由COMSOL模拟)提高了介电击穿强度(BDS)。结果,0.95SBKT - 0.05NN在220 kV/cm下表现出2.45 J/cm³的高储能密度、93.1%的高效率、2.1 J/cm³的高脉冲放电能量密度以及54.1 MW/cm³的高功率密度。储能性能在温度(-55至150°C)、频率(10 - 500 Hz)和循环(10次循环)方面表现出优异的稳定性。值得注意的是,对于脉冲充放电性能,0.95SBKT - 0.05NN在25°C和150°C下的10次循环中表现出极大的抗疲劳性,并具有出色的热稳定性。此外,在O₂中烧结的0.95SBKT - 0.05NN的BDS和储能密度进一步提高。在250 kV/cm下实现了2.92 J/cm³的更高储能密度和89%的高效率。因此,0.95SBKT - 0.05NN在脉冲储能方面显示出巨大的应用潜力。在这项工作中,我们为改善SBT的储能性能提供了一种新颖的策略和系统深入的研究。