Suppr超能文献

适用于高波动环境条件下光伏系统的混合鹈鹕群最大功率点跟踪算法

Hybrid salp swarm maximum power point tracking algorithm for photovoltaic systems in highly fluctuating environmental conditions.

作者信息

Jamaludin Mohd Nasrul Izzani, Tajuddin Mohammad Faridun Naim, Younis Tarek, Thanikanti Sudhakar Babu, Khishe Mohammad

机构信息

Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia.

Department of Electrical Engineering, Aswan University, Aswan, 81528, Egypt.

出版信息

Sci Rep. 2025 Jan 3;15(1):650. doi: 10.1038/s41598-024-84333-z.

Abstract

The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques. As long as the rate of change of irradiance does not exceed a specific limit, the HC mode is applied to track the global maximum power point (GMPP). Once a high rate of change in irradiation is detected, the SSA mode is activated. Moreover, the proposed algorithm employs the concept of boundary conditions to handle fast and slow fluctuating irradiance patterns. A comprehensive comparative evaluation of the proposed hybrid SSA-HC with state-of-the-art MPPT algorithms has been undertaken. Four distinct cases have been examined, including irradiance conditions with varying rates of change and partial shading conditions. The proposed hybrid SSA-HC algorithm has been validated and tested using a developed hardware setup, simulated in MATLAB for solar photovoltaic (PV) systems, and compared with standard SSA and HC. The performance of the tracking capability of this proposed hybrid technique at both steady-state and dynamic conditions under rapid and gradual irradiance changes demonstrates its superiority over recent state-of-the-art algorithms.

摘要

光伏系统输出的最大功率会受到诸如辐照度和温度等大气条件以及树木、雨滴、高楼大厦、动物粪便和云层等周围物体的极大影响。这些周围物体造成的部分遮挡以及快速变化的大气参数使得最大功率点跟踪(MPPT)极具挑战性。本文提出了一种混合MPPT算法,该算法结合了樽海鞘群算法(SSA)和爬山(HC)技术的优点。只要辐照度的变化率不超过特定限制,就应用HC模式来跟踪全局最大功率点(GMPP)。一旦检测到辐照度的高变化率,就激活SSA模式。此外,所提出的算法采用边界条件的概念来处理快速和缓慢波动的辐照度模式。已对所提出的混合SSA - HC算法与最先进的MPPT算法进行了全面的对比评估。研究了四种不同情况,包括具有不同变化率的辐照度条件和部分遮挡条件。所提出的混合SSA - HC算法已通过开发的硬件设置进行了验证和测试,在MATLAB中对太阳能光伏(PV)系统进行了模拟,并与标准SSA和HC进行了比较。在快速和逐渐的辐照度变化下,这种所提出的混合技术在稳态和动态条件下的跟踪能力性能证明了其优于最近的最先进算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55a0/11698988/0a364fed6fa2/41598_2024_84333_Fig12_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验