Suppr超能文献

创伤安全威胁与不良事件前瞻性观察研究方案(PrO-STAT):加拿大一家一级创伤中心的试点研究

Study protocol for a Prospective Observational study of Safety Threats and Adverse events in Trauma (PrO-STAT): a pilot study at a level-1 trauma centre in Canada.

作者信息

Nazir Anisa, McGowan Melissa, Shore Eliane M, Keown-Stoneman Charles, Grantcharov Teodor, Nolan Brodie

机构信息

Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.

出版信息

BMJ Open. 2025 Jan 4;15(1):e087994. doi: 10.1136/bmjopen-2024-087994.

Abstract

INTRODUCTION

Traumatic injuries are a significant public health concern globally, resulting in substantial mortality, hospitalisation and healthcare burden. Despite the establishment of specialised trauma centres, there remains considerable variability in trauma-care practices and outcomes, particularly in the initial phase of trauma resuscitation in the trauma bay. This stage is prone to preventable errors leading to adverse events (AEs) that can impact patient outcomes. Prior studies have identified common causes of these errors, including delayed diagnostics, disorganisation of staff, equipment issues and communication breakdowns, which collectively contribute to AEs. This study addresses gaps in understanding the root causes of these errors by evaluating the most frequent AEs in trauma care through real-time video reviews of resuscitations in the trauma bay. Insights from this evaluation will inform targeted interventions to improve procedural adherence, communication and overall team performance, ultimately reducing preventable errors and improving patient safety.

METHODS AND ANALYSIS

A prospective observational study will be conducted at St. Michael's Hospital, a level-1 trauma centre, to evaluate resuscitations in the trauma bay. All consecutive trauma team activations over 12 months will be included, with data collected using audio-visual recordings and physiological monitoring. A synchronised data capture and analysis platform will comprehensively assess AEs, errors and human and environmental factors during trauma resuscitations. The study aims to detect recurring error patterns, evaluate practice variations and correlate trauma team performance with in-hospital outcomes. Statistical analyses will include descriptive statistics, logistic regression models and multivariable analyses to identify associations and predictors of AEs and patient outcomes.

ETHICS AND DISSEMINATION

Institutional research ethics approval was obtained (SMH REB # 21-009). A modified consent model will be employed for participants. Staff, physicians and learners will be provided with information regarding the study and will have the option to opt-out or withdraw consent. Similarly, trauma patients and their next of kin will be informed about the study, with provisions for opting out or withdrawing consent within 48 hours of recording. Measures will be implemented to ensure data confidentiality, anonymity and respect for participants' autonomy and privacy. The study results will be shared through peer-reviewed journal publications and conference presentations, and key institutional stakeholders will be informed about developing strategies to improve patient safety in trauma care.

摘要

引言

创伤性损伤是全球重大的公共卫生问题,导致大量死亡、住院治疗以及医疗负担。尽管设立了专门的创伤中心,但创伤护理实践和结果仍存在很大差异,尤其是在创伤复苏室的创伤复苏初始阶段。这一阶段容易出现可预防的错误,进而导致不良事件(AE),影响患者预后。先前的研究已确定了这些错误的常见原因,包括诊断延迟、人员组织混乱、设备问题和沟通障碍,这些因素共同导致了不良事件。本研究通过对创伤复苏室复苏过程进行实时视频回顾,评估创伤护理中最常见的不良事件,以填补对这些错误根本原因理解上的空白。此次评估所得的见解将为有针对性的干预措施提供依据,以提高操作依从性、改善沟通及整体团队表现,最终减少可预防的错误并提高患者安全性。

方法与分析

将在一级创伤中心圣迈克尔医院进行一项前瞻性观察性研究,以评估创伤复苏室的复苏情况。将纳入12个月内所有连续的创伤团队启动案例,通过视听记录和生理监测收集数据。一个同步的数据采集与分析平台将全面评估创伤复苏过程中的不良事件、错误以及人为和环境因素。该研究旨在检测反复出现的错误模式,评估实践差异,并将创伤团队的表现与院内结局相关联。统计分析将包括描述性统计、逻辑回归模型和多变量分析,以确定不良事件和患者结局的关联及预测因素。

伦理与传播

已获得机构研究伦理批准(SMH REB # 21 - 009)。将对参与者采用改良的同意模式。将向工作人员、医生和学习者提供有关该研究的信息,他们可选择退出或撤回同意。同样,将告知创伤患者及其近亲有关该研究的情况,并规定在记录后48小时内可选择退出或撤回同意。将采取措施确保数据保密、匿名,并尊重参与者的自主权和隐私。研究结果将通过同行评审的期刊出版物和会议报告进行分享,并将向关键的机构利益相关者通报制定改善创伤护理患者安全的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb5/11800214/abc245e297ec/bmjopen-15-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验