Suppr超能文献

基于创新深度学习技术的野外指针式仪表识别方法

Pointer meters recognition method in the wild based on innovative deep learning techniques.

作者信息

Feng Jiajun, Luo Haibo, Ming Rui

机构信息

College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

College of Computer and Data Science, Minjiang University, Fuzhou, 350018, China.

出版信息

Sci Rep. 2025 Jan 4;15(1):845. doi: 10.1038/s41598-024-81248-7.

Abstract

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images. We also combine the output of the decoder network and the output of the improved CBAM as inputs to the Object Heatmap-Scalarmap Module to find pointer tip heat map peaks and predict pointer pointing. The method proposed in this paper is compared with several deep learning networks. The experimental results show that the model in this paper has the highest recognition correctness, with an average precision of 0.95 and 0.763 for Object Keypoint Similarity and Vector Direction Similarity, and an average recall of 0.951 and 0.856 in the test set, respectively, and achieves the best results in terms of efficiency and accuracy achieve the best trade-off, and performs well in recognizing multiple pointer targets. This demonstrates its robustness in real scenarios and provides a new idea for recognizing pointers in low-quality images more efficiently and accurately in complex industrial scenarios.

摘要

本研究提出了一种利用深度学习在现代工业场景中识别仪表及其指针的新方法。我们开发了一种神经网络模型,该模型能够在低质量图像上检测仪表及其一个或多个指针。我们使用编码器网络、跳跃连接和改进的卷积块注意力模块(CBAM)来检测图像中的仪表板和指针关键点。我们还将解码器网络的输出与改进后的CBAM的输出相结合,作为对象热图-标量图模块的输入,以找到指针尖端热图峰值并预测指针指向。本文提出的方法与几种深度学习网络进行了比较。实验结果表明,本文中的模型具有最高的识别正确率,在测试集中对象关键点相似度和向量方向相似度的平均精度分别为0.95和0.763,平均召回率分别为0.951和0.856,在效率和准确性方面实现了最佳权衡,并且在识别多个指针目标方面表现良好。这证明了其在实际场景中的鲁棒性,并为在复杂工业场景中更高效、准确地识别低质量图像中的指针提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dc/11700170/92d2f60fe751/41598_2024_81248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验