Suppr超能文献

用于脑建模的混沌递归神经网络:综述

Chaotic recurrent neural networks for brain modelling: A review.

作者信息

Mattera Andrea, Alfieri Valerio, Granato Giovanni, Baldassarre Gianluca

机构信息

Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.

Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy.

出版信息

Neural Netw. 2025 Apr;184:107079. doi: 10.1016/j.neunet.2024.107079. Epub 2024 Dec 27.

Abstract

Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.

摘要

即使在没有外部刺激的情况下,大脑也会自发活动。事实上,大多数皮层活动是由循环内部产生的。理论和实验研究都表明,混沌动力学是这种自发活动的特征。虽然大脑混沌活动的确切功能仍然令人困惑,但我们知道混沌具有许多优势。从计算的角度来看,混沌增强了网络动力学的复杂性。从行为的角度来看,混沌活动可以产生探索所需的变异性。此外,信息存储和传递在有序和混沌的临界边界处达到最大化。尽管有这些好处,但由于混沌活动给学习算法带来的挑战,许多计算脑模型都避免纳入自发混沌活动。然而,近年来,已经提出了多种方法来克服这一限制。结果,开发了许多不同的算法,最初是在储层计算范式内。随着时间的推移,该领域不断发展,以提高算法的生物学合理性和性能,有时甚至超越了储层计算框架。在这篇综述文章中,我们研究了混沌的计算优势以及混沌递归神经网络的独特属性,特别关注那些通常在储层计算中使用的属性。我们还对旨在训练混沌递归神经网络的算法进行了详细分析,追溯了它们的历史演变并突出了它们发展中的关键里程碑。最后,我们探讨了混沌递归神经网络在脑建模中的应用和局限性,考虑了它们在神经科学之外可能产生的更广泛影响,并概述了未来研究的有希望的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验