Suppr超能文献

切口损伤后人类志愿者的血液蛋白质组学与多模态风险分析:一项推进术后个性化疼痛管理的转化研究。

Blood proteomics and multimodal risk profiling of human volunteers after incision injury: A translational study for advancing personalized pain management after surgery.

作者信息

Segelcke Daniel, Sondermann Julia R, Kappert Christin, Pradier Bruno, Görlich Dennis, Fobker Manfred, Vollert Jan, Zahn Peter K, Schmidt Manuela, Pogatzki-Zahn Esther M

机构信息

Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster 44651, Germany.

Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Systems Biology of Pain Group, University of Vienna, UZA II, Josef-Holaubek-Platz 2, Vienna A-1090, Austria.

出版信息

Pharmacol Res. 2025 Feb;212:107580. doi: 10.1016/j.phrs.2025.107580. Epub 2025 Jan 3.

Abstract

A significant number of patients develop chronic pain after surgery, but prediction of those who are at risk is currently not possible. Thus, prognostic prediction models that include bio-psycho-social and physiological factors in line with the complex nature of chronic pain would be urgently required. Here, we performed a translational study in male volunteers before and after an experimental incision injury. We determined multi-modal features ranging from pain characteristics and psychological questionnaires to blood plasma proteomics. Outcome measures included pain intensity ratings and the extent of the area of hyperalgesia to mechanical stimuli surrounding the incision, as a proxy of central sensitization. A multi-step logistic regression analysis was performed to predict outcome measures based on feature combinations using data-driven cross-validation and prognostic model development. Phenotype-based stratification resulted in the identification of low and high responders for both outcome measures. Regression analysis revealed prognostic proteomic, specific psychophysical, and psychological features. A combinatorial set of distinct features enabled us to predict outcome measures with increased accuracy compared to using single features. Remarkably, in high responders, protein network analysis suggested a protein signature characteristic of low-grade inflammation. Alongside, in silico drug repurposing highlighted potential treatment options employing antidiabetic and anti-inflammatory drugs. Taken together, we present here an integrated pipeline that harnesses bio-psycho-physiological data for prognostic prediction in a translational approach. This pipeline opens new avenues for clinical application with the goal of stratifying patients and identifying potential new targets, as well as mechanistic correlates, for postsurgical pain.

摘要

相当数量的患者在手术后会出现慢性疼痛,但目前无法预测哪些患者有风险。因此,迫切需要符合慢性疼痛复杂性质的包含生物 - 心理 - 社会和生理因素的预后预测模型。在此,我们在男性志愿者身上进行了一项实验性切口损伤前后的转化研究。我们确定了从疼痛特征、心理问卷到血浆蛋白质组学等多模式特征。结果指标包括疼痛强度评分以及切口周围对机械刺激的痛觉过敏区域范围,以此作为中枢敏化的指标。我们进行了多步逻辑回归分析,以基于特征组合预测结果指标,采用数据驱动的交叉验证和预后模型开发。基于表型的分层导致识别出两种结果指标的低反应者和高反应者。回归分析揭示了预后蛋白质组学、特定的心理物理学和心理特征。与使用单一特征相比,一组独特特征的组合使我们能够更准确地预测结果指标。值得注意的是,在高反应者中,蛋白质网络分析表明存在低度炎症特征的蛋白质特征。同时,计算机辅助药物重新利用突出了使用抗糖尿病和抗炎药物的潜在治疗选择。综上所述,我们在此展示了一种综合流程,该流程利用生物 - 心理 - 生理数据以转化方法进行预后预测。该流程为临床应用开辟了新途径,目标是对患者进行分层,并识别术后疼痛的潜在新靶点以及机制关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验