Suppr超能文献

DOCK 6中受体去溶剂化评分和共价采样的开发:在RAS测试集上评估的方法

Development of Receptor Desolvation Scoring and Covalent Sampling in DOCK 6: Methods Evaluated on a RAS Test Set.

作者信息

Tan Y Stanley, Chakrabarti Mayukh, Stein Reed M, Prentis Lauren E, Rizzo Robert C, Kurtzman Tom, Fischer Marcus, Balius Trent E

机构信息

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick 21702, Maryland, United States.

Department of Pharmaceutical Chemistry, University of California─San Francisco, San Francisco 94158, California, United States.

出版信息

J Chem Inf Model. 2025 Jan 27;65(2):722-748. doi: 10.1021/acs.jcim.4c01623. Epub 2025 Jan 6.

Abstract

Molecular docking methods are widely used in drug discovery efforts. RAS proteins are important cancer drug targets, and are useful systems for evaluating docking methods, including accounting for solvation effects and covalent small molecule binding. Water often plays a key role in small molecule binding to RAS proteins, and many inhibitors─including FDA-approved drugs─covalently bind to oncogenic RAS proteins. We assembled a RAS test set, consisting of 138 RAS protein structures and 2 structures of KRAS DNA in complex with ligands. In DOCK 6, we have implemented a receptor desolvation scoring function and a covalent docking algorithm. These new features were evaluated using the test set, with pose reproduction, cross-docking, and enrichment calculations. We tested two solvation methods for generating receptor desolvation scoring grids: GIST and 3D-RISM. Using grids from GIST or 3D-RISM, water displacements are precomputed with Gaussian-weighting, and trilinear interpolation is used to speed up this scoring calculation. To test receptor desolvation scoring, we prepared GIST and 3D-RISM grids for all KRAS systems in the test set, and we compare enrichment performance with and without receptor desolvation. Accounting for receptor desolvation using GIST improves enrichment for 51% of systems and worsens enrichment for 35% of systems, while using 3D-RISM improves enrichment for 44% of systems and worsens enrichment for 30% of systems. To more rigorously test accounting for receptor desolvation using 3D-RISM, we compare pose reproduction with and without 3D-RISM receptor desolvation. Pose reproduction docking with 3D-RISM yields a 1.8 ± 2.41% increase in success rate compared to docking without 3D-RISM. Accounting for receptor desolvation provides a small, but significant, improvement in both enrichment and pose reproduction for this set. We tested the covalent attach-and-grow algorithm on 70 KRAS systems containing covalent ligands, obtaining similar pose reproduction success rates between covalent and noncovalent docking. Comparing covalent docking to noncovalent docking, there is a 2.4 ± 3.29% increase and a 1.27 ± 3.33% decline in the success rate when docking with experimental and SMILES-generated ligand conformations, respectively. As a proof-of-concept, we performed covalent virtual screens with and without receptor desolvation scoring, targeting the switch II pocket of KRAS, using 3.4 million make-on-demand acrylamide compounds from the Enamine REAL database. On average, the attach-and-grow algorithm spends approximately 17.61 s per molecule across the screen. The test set is available at https://github.com/tbalius/teb_docking_test_sets.

摘要

分子对接方法在药物研发工作中被广泛应用。RAS蛋白是重要的癌症药物靶点,也是评估对接方法的有用系统,包括考虑溶剂化效应和小分子共价结合。水在小分子与RAS蛋白的结合中常常起关键作用,许多抑制剂(包括FDA批准的药物)与致癌RAS蛋白共价结合。我们组装了一个RAS测试集,由138个RAS蛋白结构以及2个与配体复合的KRAS DNA结构组成。在DOCK 6中,我们实现了一种受体去溶剂化评分函数和一种共价对接算法。使用该测试集通过姿态重现、交叉对接和富集计算对这些新特性进行了评估。我们测试了两种用于生成受体去溶剂化评分网格的溶剂化方法:GIST和3D - RISM。使用来自GIST或3D - RISM的网格,通过高斯加权预先计算水的位移,并使用三线性插值来加速这种评分计算。为了测试受体去溶剂化评分,我们为测试集中的所有KRAS系统准备了GIST和3D - RISM网格,并比较了有无受体去溶剂化时的富集性能。使用GIST考虑受体去溶剂化可提高51%的系统的富集效果,而使35%的系统的富集效果变差,而使用3D - RISM可提高44%的系统的富集效果,使30%的系统的富集效果变差。为了更严格地测试使用3D - RISM考虑受体去溶剂化的情况,我们比较了有无3D - RISM受体去溶剂化时的姿态重现。与不使用3D - RISM进行对接相比,使用3D - RISM进行姿态重现对接的成功率提高了1.8±2.41%。考虑受体去溶剂化对于该数据集的富集和姿态重现都有小幅但显著的改善。我们在70个含有共价配体的KRAS系统上测试了共价连接并生长算法,共价对接和非共价对接获得了相似的姿态重现成功率。将共价对接与非共价对接进行比较,当与实验生成的和通过SMILES生成的配体构象进行对接时,成功率分别提高了2.4±3.29%和下降了1.27±3.33%。作为概念验证,我们使用来自Enamine REAL数据库的340万个按需制备的丙烯酰胺化合物,对有无受体去溶剂化评分的KRAS开关II口袋进行了共价虚拟筛选。平均而言,连接并生长算法在整个筛选过程中每个分子大约花费17.61秒。该测试集可在https://github.com/tbalius/teb_docking_test_sets获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f55/11776051/f305e4d2a0ba/ci4c01623_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验