Suppr超能文献

双相配体工程助力实现18.21%的FAPbI量子点太阳能电池。

Dual-Phase Ligand Engineering Enables 18.21% FAPbI Quantum Dot Solar Cells.

作者信息

Li Du, Zhao Chenyu, Zhang Xuliang, Zhao Xinyu, Huang Hehe, Li Huifeng, Li Fangchao, Yuan Jianyu

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.

Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China.

出版信息

Adv Mater. 2025 Feb;37(8):e2417346. doi: 10.1002/adma.202417346. Epub 2025 Jan 5.

Abstract

Formamidinium lead triiodide (FAPbI) perovskite quantum dot (PQD) are promising candidate for high-performing quantum dot photovoltaic due to its narrow bandgap, high ambient stability, and long carrier lifetime. However, the carrier transport blockage and nonradiative recombination loss, originating from the high-dielectric ligands and defects/trap states on the FAPbI PQD surface, significantly limit the efficiency and stability of its photovoltaic performance. In this work, through exploring dual-site molecular ligands, namely 2-thiophenemethylammonium iodide (2-TM) and 2-thiopheneethylammonium iodide (2-TE), a dual-phase synergistic ligand exchange (DSLE) protocol consisting of both solution-phase and solid-state ligand engineering is demonstrated. The DSLE strategy effectively replaces the native long insulating ligands and simultaneously passivate surface defects in hybrid FAPbI PQDs, leading to enhanced electronic coupling for efficient charge transport. Consequently, the FAPbI PQD solar cell based on DSLE strategy achieves a notable enhanced efficiency from 15.43% to 17.79% (2-TM) and 18.21% (2-TE), respectively. Besides, both 2-TM and 2-TE engineered devices exhibit enhanced stability, maintaining over 80% of its initial efficiency after aging in ambient environment (20-30% humidity, 25 °C) for over 1400 h. It believes these findings will provide a new protocol to precisely regulate the surface chemistry of hybrid PQDs toward high-performance optoelectronic applications.

摘要

碘化甲脒铅(FAPbI)钙钛矿量子点(PQD)因其窄带隙、高环境稳定性和长载流子寿命,是高性能量子点光伏领域很有前景的候选材料。然而,由于FAPbI量子点表面的高介电配体以及缺陷/陷阱态导致的载流子传输受阻和非辐射复合损失,显著限制了其光伏性能的效率和稳定性。在这项工作中,通过探索双位点分子配体,即2-噻吩甲基碘化铵(2-TM)和2-噻吩乙基碘化铵(2-TE),展示了一种由溶液相和固态配体工程组成的双相协同配体交换(DSLE)方案。DSLE策略有效地取代了原有的长绝缘配体,同时钝化了混合FAPbI量子点中的表面缺陷,从而增强了电子耦合以实现高效电荷传输。因此,基于DSLE策略的FAPbI量子点太阳能电池的效率分别从15.43%显著提高到17.79%(2-TM)和18.21%(2-TE)。此外,2-TM和用2-TE工程化处理的器件都表现出增强的稳定性,在环境条件(湿度20 - 30%,25℃)下老化超过1400小时后,仍保持其初始效率的80%以上。相信这些发现将为精确调控混合量子点的表面化学以实现高性能光电器件应用提供一种新方案。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验