Park So Yeon, Shim Hyung Cheoul
Department of Applied Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea.
Department of Nanomechatronics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):57124-57133. doi: 10.1021/acsami.0c17877. Epub 2020 Dec 8.
Perovskite quantum dots (PQDs) have expanded the scalability of perovskite materials by their high crystallinity, band-gap tunability, and surface ligand-driven functionalities in the colloidal state across optoelectronics as well as photovoltaics. To improve PQD performance in applications, however, defect control has emerged as a major challenge given the increased PQD surface area. Herein, we have developed a heterostructured PQD solar cell by combining CsPbI and FAPbI (FA, formamidinium) PQD layers to introduce a multinary PQD layer based on a solid-state A-site cation-exchange strategy. A heterostructure, including the solid-state diffusion-driven multinary PQD layer, creates an internally graded heterojunction for more efficient charge extraction. The best PQD cell achieves a power conversion efficiency (PCE) of 16.07% with negligible hysteresis. Furthermore, this architecture offers significantly enhanced stability with reduction of trap-assisted recombination as compared to cells of a monocompositional PQD layer. The unencapsulated device retains a 96% PCE after 1000 h in ambient storage.
钙钛矿量子点(PQDs)凭借其高结晶度、带隙可调性以及在胶体状态下通过表面配体驱动的功能,在整个光电子学和光伏领域扩展了钙钛矿材料的可扩展性。然而,为了提高PQD在应用中的性能,鉴于PQD表面积的增加,缺陷控制已成为一项重大挑战。在此,我们通过结合CsPbI和FAPbI(FA,甲脒)PQD层,基于固态A位阳离子交换策略引入多组分PQD层,开发了一种异质结构的PQD太阳能电池。包括固态扩散驱动的多组分PQD层在内的异质结构,形成了一个内部渐变的异质结,用于更高效的电荷提取。最佳的PQD电池实现了16.07%的功率转换效率(PCE),滞后现象可忽略不计。此外,与单组分PQD层的电池相比,这种结构显著提高了稳定性,减少了陷阱辅助复合。未封装的器件在环境储存1000小时后仍保留96%的PCE。