Suppr超能文献

用于聚二甲基硅氧烷填充石墨烯织物应变传感器的基于基体工程的多尺度结构控制

Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors.

作者信息

Wu Ying, An Chao, Guo Yaru, Kang Liying, Wang Yang, Wan Haixiao, Tang Haijun, Ma Qianyi, Yang Chunming, Xu Ming, Zhao Yixin, Jiang Naisheng

机构信息

Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.

出版信息

Small. 2025 Feb;21(6):e2410148. doi: 10.1002/smll.202410148. Epub 2025 Jan 5.

Abstract

Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS. This enhanced sensing performance is attributed to multiscale structural control of the graphene network, enabled by precisely tuned cure shrinkage of PDMS. Using in situ scanning electron microscopy, X-ray scattering, and Raman spectroscopy, an optimized PDMS base-to-curing-agent ratio of 10:0.8 is show that enables interconnected structural changes from atomic to macroscopic scales, including larger "real" strain within the graphene lattice, enhanced flattening of graphene wrinkles, and increased crack density. These findings highlight the critical role of elastomer shrinkage in modulating the multiscale structure of conductive networks, offering new insights into matrix engineering strategies that advance the sensing performance of elastomer-based flexible strain sensors.

摘要

在复合材料制造过程中,弹性体固化收缩常常会导致导电网络出现褶皱,这对柔性应变传感器的性能有显著影响,然而这种褶皱的具体作用尚未完全明确。在此,通过仔细调整基础剂与固化剂的比例来优化聚二甲基硅氧烷(PDMS)的固化收缩,开发出一种高灵敏度的聚二甲基硅氧烷填充石墨烯织物(PDMS-f-GWF)应变传感器。该传感器在25%应变下实现了约700的应变系数,比使用商业配方PDMS的传感器高出6倍以上。这种增强的传感性能归因于通过精确调整PDMS的固化收缩实现的石墨烯网络多尺度结构控制。利用原位扫描电子显微镜、X射线散射和拉曼光谱,结果表明优化后的PDMS基础剂与固化剂比例为10:0.8,能够实现从原子尺度到宏观尺度的相互关联结构变化,包括石墨烯晶格内更大的“真实”应变、石墨烯褶皱的增强扁平化以及裂纹密度的增加。这些发现突出了弹性体收缩在调节导电网络多尺度结构中的关键作用,为推进基于弹性体的柔性应变传感器传感性能的基体工程策略提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验