Suppr超能文献

预测脑叶脑出血预后不良的列线图模型:一项多中心研究

Nomogram Models for Predicting Poor Prognosis in Lobar Intracerebral Hemorrhage: A Multicenter Study.

作者信息

Lin Yijun, Wang Anxin, Zhang Xiaoli, Li Mengyao, Ju Yi, Wang Wenjuan, Zhao Xingquan

机构信息

Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China.

出版信息

Curr Neurovasc Res. 2025;21(5):595-605. doi: 10.2174/0115672026365579241220073506.

Abstract

OBJECTIVE

We aimed to investigate the prognostic factors associated with lobar intracerebral hemorrhage (ICH) and to construct convenient models to predict 3-month unfavorable functional outcomes or all-cause death.

METHODS

Our study included 322 patients with spontaneous lobar ICH from 13 hospitals in Beijing as a derivation cohort. The clinical outcomes were unfavorable functional prognosis, defined as a modified Rankin Scale (mRS) score of 4-6, or all-cause death. Variable selection was performed using the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and two nomogram models were constructed. Additionally, multivariable logistic regression analysis was conducted to identify the factors associated with unfavorable prognosis. Finally, the Area Under The Receiver Operating Characteristic Curve (AUROC), calibration curve, and decision curve analyses (DCA) were performed to evaluate the models in both the derivation and external validation cohorts.

RESULTS

Predictive factors for unfavorable functional outcomes in lobar ICH included age, dyslipidemia, ICH volume, NIHSS score, Stroke-Associated Pneumonia (SAP), and lipidlowering therapy. The model included age, GCS score, NIHSS score, antihypertensive therapy, in-hospital rehabilitation training, and ICH volume to predict all-cause mortality. Our models exhibited good discriminative ability, with an AUC of 0.897 (95% CI: 0.862-0.933) for unfavorable functional outcomes and 0.894 (95% CI: 0.870-0.918) for death. DCA and calibration curves confirmed the models' excellent clinical decision-making and calibration capabilities.

CONCLUSION

Nomogram models for predicting 3-month unfavorable outcomes or death in patients with lobar ICH were developed and independently validated in this study, providing valuable prognostic information for clinical decision-making.

摘要

目的

我们旨在研究与脑叶脑出血(ICH)相关的预后因素,并构建便捷模型以预测3个月时不良功能结局或全因死亡。

方法

我们的研究纳入了来自北京13家医院的322例自发性脑叶ICH患者作为推导队列。临床结局为不良功能预后,定义为改良Rankin量表(mRS)评分为4 - 6分,或全因死亡。使用最小绝对收缩和选择算子(LASSO)分析进行变量选择,并构建了两个列线图模型。此外,进行多变量逻辑回归分析以确定与不良预后相关的因素。最后,进行受试者操作特征曲线下面积(AUROC)、校准曲线和决策曲线分析(DCA),以在推导队列和外部验证队列中评估模型。

结果

脑叶ICH不良功能结局的预测因素包括年龄、血脂异常、ICH体积、美国国立卫生研究院卒中量表(NIHSS)评分、卒中相关性肺炎(SAP)和降脂治疗。该模型纳入年龄、格拉斯哥昏迷量表(GCS)评分、NIHSS评分、降压治疗、住院康复训练和ICH体积以预测全因死亡率。我们的模型表现出良好的判别能力,不良功能结局的AUC为0.897(95%可信区间:0.862 - 0.933),死亡的AUC为0.894(95%可信区间:0.870 - 0.918)。DCA和校准曲线证实了模型具有出色的临床决策和校准能力。

结论

本研究开发并独立验证了用于预测脑叶ICH患者3个月不良结局或死亡的列线图模型,为临床决策提供了有价值的预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验