Suppr超能文献

结合模式识别技术的表面工程纳米颗粒用于在实际样品基质中快速鉴定和区分多种硫醇

Surface Engineered Nanoparticles Coupled with Pattern Recognition Techniques for Rapid Identification and Discrimination of Multiple Thiols in a Real Sample Matrix.

作者信息

Sharma Latakshi, Singh Gagandeep, Kaur Navneet, Singh Narinder

机构信息

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.

Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.

出版信息

Anal Chem. 2025 Jan 14;97(1):1010-1018. doi: 10.1021/acs.analchem.4c06043. Epub 2025 Jan 6.

Abstract

Thiols, including Cysteine (CYS) and Glutathione (GSH), play pivotal roles in numerous physiological processes as they are integral components of many essential biomolecules and are found abundantly in foods such as additives and antioxidants. Any deviations in thiol concentrations can disrupt normal physiological functions, affecting the body's metabolism and potentially leading to diseases such as Alzheimer's and Parkinson's diseases, etc. Consequently, the imperative need for developing reliable and robust techniques for thiol analysis is crucial for early disease detection and ensuring food safety. In this regard, we have decorated the surface of organic nanoparticles with metal ions, which have been characterized using various techniques such as Dynamic Light Scattering (DLS), Zeta potential, Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM) and utilized for the detection and discrimination of various thiols (cysteine, Glutathione, 3-mercaptopropionic acid, 2-mercapto ethanol, and cysteamine). Photophysical results revealed that various thiols exhibit unique binding affinities toward sensor elements, serving as fingerprints for each thiol. These patterns can be quantitatively differentiated using linear discrimination analysis (LDA) and hierarchical clustering analysis (HCA). The sensor array effectively discriminates target thiols with 100% accuracy and high sensitivity with limit of detection values from 1.19 to 4.20 μM. Apparently, it offers required simplicity, rapid response, sensitivity, and stability, which holds promise for enhancing food safety.

摘要

硫醇,包括半胱氨酸(CYS)和谷胱甘肽(GSH),在众多生理过程中发挥着关键作用,因为它们是许多重要生物分子的组成部分,并且在诸如添加剂和抗氧化剂等食物中大量存在。硫醇浓度的任何偏差都可能破坏正常生理功能,影响身体代谢,并可能导致诸如阿尔茨海默病和帕金森病等疾病。因此,开发可靠且强大的硫醇分析技术对于早期疾病检测和确保食品安全至关重要。在这方面,我们用金属离子修饰了有机纳米颗粒的表面,已使用诸如动态光散射(DLS)、zeta电位、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)等各种技术对其进行了表征,并将其用于检测和区分各种硫醇(半胱氨酸、谷胱甘肽、3-巯基丙酸、2-巯基乙醇和半胱胺)。光物理结果表明,各种硫醇对传感器元件表现出独特的结合亲和力,可作为每种硫醇的指纹图谱。这些模式可以使用线性判别分析(LDA)和层次聚类分析(HCA)进行定量区分。该传感器阵列能以100%的准确率和高灵敏度有效区分目标硫醇,检测限为1.19至4.20μM。显然,它具备所需的简便性、快速响应、灵敏度和稳定性,有望提升食品安全。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验