Suppr超能文献

基于计算流体动力学的Fontan腔肺辅助装置溶血研究的克里金代理模型

CFD-Based Hemolysis Study of Fontan Cavopulmonary Assist Device Using Kriging Surrogate Modeling.

作者信息

Sarfare Shreyas, Palazzolo Alan, Afaq Muhammad, Ghali George, Giridharan Guruprasad, Rodefeld Mark

机构信息

Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA.

University of Louisville, Louisville, Kentucky, USA.

出版信息

Artif Organs. 2025 May;49(5):802-812. doi: 10.1111/aor.14938. Epub 2025 Jan 6.

Abstract

BACKGROUND

Predicting hemolysis numerically based on the power-law model using idealized coefficients obtained from simplified devices yields a large variability in hemolysis index predictions. A computational fluid dynamics (CFD)-based Kriging surrogate modeling approach, developed by Craven et al. at the US Food & Drug Administration (FDA), was applied to a Fontan cavopulmonary assist device (CPAD) to generate device-specific hemolysis power-law coefficients.

METHODS

The hemolysis index of a CPAD was measured using tests in a mock loop and simulated using CFD. The Kriging surrogate modeling approach was employed for the Lagrangian and Eulerian formulations of the stress-based hemolysis power-law model. The CPAD-specific power-law coefficients obtained from one design of the CPAD were used in predicting the Modified Index of Hemolysis (MIH) for an alternate design of the CPAD.

RESULTS

The MIH CFD predictions with the CPAD-specific coefficients deviate by 16%-20% using the Eulerian approach, and 7%-15% using the Lagrangian approach, compared with experimental results for the alternate design. This vastly improves over the use of idealized empirical coefficients, which yield variation in MIH predictions up to two orders of magnitude.

CONCLUSION

The presented power-law approach shows good correlation between CFD and tests in predicting MIH for CPAD design modifications. The hemolysis power-law coefficients obtained in this study may be useful in predicting hemolysis in similar rotary blood pumps.

摘要

背景

基于幂律模型,使用从简化装置获得的理想化系数进行溶血数值预测,会导致溶血指数预测存在很大差异。美国食品药品监督管理局(FDA)的克雷文等人开发的一种基于计算流体动力学(CFD)的克里金代理建模方法,被应用于一种Fontan腔肺辅助装置(CPAD),以生成特定于该装置的溶血幂律系数。

方法

使用模拟回路测试测量CPAD的溶血指数,并使用CFD进行模拟。克里金代理建模方法被用于基于应力的溶血幂律模型的拉格朗日和欧拉公式。从CPAD的一种设计中获得的特定于CPAD的幂律系数,被用于预测CPAD另一种设计的改良溶血指数(MIH)。

结果

与另一种设计的实验结果相比,使用特定于CPAD的系数进行的MIH CFD预测,采用欧拉方法时偏差为16%-20%,采用拉格朗日方法时偏差为7%-15%。这比使用理想化经验系数有了很大改进,理想化经验系数会导致MIH预测的变化高达两个数量级。

结论

所提出的幂律方法在预测CPAD设计修改的MIH时,显示出CFD与测试之间有良好的相关性。本研究中获得的溶血幂律系数,可能有助于预测类似旋转血泵中的溶血情况。

相似文献

1
CFD-Based Hemolysis Study of Fontan Cavopulmonary Assist Device Using Kriging Surrogate Modeling.
Artif Organs. 2025 May;49(5):802-812. doi: 10.1111/aor.14938. Epub 2025 Jan 6.
2
A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
Biomech Model Mechanobiol. 2019 Aug;18(4):1005-1030. doi: 10.1007/s10237-019-01126-4. Epub 2019 Feb 27.
3
Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
Biomech Model Mechanobiol. 2023 Apr;22(2):433-451. doi: 10.1007/s10237-022-01655-5. Epub 2022 Nov 23.
6
Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation.
J Thorac Cardiovasc Surg. 2019 Nov;158(5):1424-1433.e5. doi: 10.1016/j.jtcvs.2019.03.008. Epub 2019 Mar 21.
7
Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist.
J Thorac Cardiovasc Surg. 2013 Jan;145(1):249-57. doi: 10.1016/j.jtcvs.2012.01.082. Epub 2012 Mar 14.
8
Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model.
Artif Organs. 2023 Sep;47(9):1531-1538. doi: 10.1111/aor.14543. Epub 2023 Apr 28.
9
Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
Artif Organs. 2020 Jul;44(7):E263-E276. doi: 10.1111/aor.13643. Epub 2020 Feb 16.
10
A Cavopulmonary Assist Device for Long-Term Therapy of Fontan Patients.
Semin Thorac Cardiovasc Surg. 2022 Spring;34(1):238-248. doi: 10.1053/j.semtcvs.2021.06.016. Epub 2021 Jun 22.

本文引用的文献

2
Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model.
Artif Organs. 2023 Sep;47(9):1531-1538. doi: 10.1111/aor.14543. Epub 2023 Apr 28.
3
Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
Biomech Model Mechanobiol. 2023 Apr;22(2):433-451. doi: 10.1007/s10237-022-01655-5. Epub 2022 Nov 23.
4
CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps.
IEEE Trans Biomed Eng. 2021 Apr;68(4):1370-1378. doi: 10.1109/TBME.2020.3030316. Epub 2021 Mar 18.
5
Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
Artif Organs. 2020 Aug;44(8):E348-E368. doi: 10.1111/aor.13663. Epub 2020 Mar 5.
6
A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
Biomech Model Mechanobiol. 2019 Aug;18(4):1005-1030. doi: 10.1007/s10237-019-01126-4. Epub 2019 Feb 27.
7
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
Artif Organs. 2017 Jul;41(7):603-621. doi: 10.1111/aor.12871. Epub 2017 Jun 23.
8
A Cellular Model of Shear-Induced Hemolysis.
Artif Organs. 2017 Sep;41(9):E80-E91. doi: 10.1111/aor.12832. Epub 2017 Jan 3.
9
The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava.
Ann Biomed Eng. 2016 Dec;44(12):3568-3582. doi: 10.1007/s10439-016-1663-x. Epub 2016 Jun 6.
10
Shear-Induced Hemolysis: Species Differences.
Artif Organs. 2015 Sep;39(9):795-802. doi: 10.1111/aor.12459. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验