Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.
Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD, USA.
Artif Organs. 2020 Aug;44(8):E348-E368. doi: 10.1111/aor.13663. Epub 2020 Mar 5.
This work introduces a new Lagrangian strain-based model to predict the shear-induced hemolysis in biomedical devices. Current computational models for device-induced hemolysis usually utilize empirical fitting of the released free hemoglobin (Hb) in plasma from damaged red blood cells (RBCs). These empirical correlations contain parameters that depend on specific device and operating conditions, thus cannot be used to predict hemolysis in a general device. The proposed algorithm does not have any empirical parameters, thus can presumably be used for hemolysis prediction in various blood-wetting medical devices. In contrast to empirical correlations in which the Hb release is related to the shear stress and exposure time without considering the physical processes, the proposed model links flow-induced deformation of the RBC membrane to membrane permeabilization and Hb release. In this approach, once the steady-state numerical solution of blood flow in the device is obtained under a prescribed operating condition, sample path lines are traced from the inlet of the device to the outlet to calculate the history of the shear stress tensor. In solving the fluid flow, it is assumed that RBCs do not have any influence on the flow pattern. Along each path line, shear stress tensor will be input into a coarse-grained (CG) RBC model to calculate the RBC deformation. Then the correlations obtained from molecular dynamics (MD) simulations are applied to relate the local areal RBC deformation to the perforated area on the RBC membrane. Finally, Hb released out of transient pores is calculated over each path line via a diffusion equation considering the effects of the steric hindrance and increased hydrodynamic drag due to the size of the Hb molecule. The total index of hemolysis (IH) is calculated by integration of released Hb over all the path lines in the computational domain. Hemolysis generated in the Food and Drug Administration (FDA) nozzle and two blood pumps, that is, a CentriMag blood pump (a centrifugal pump) and HeartMate II (an axial pump), for different flow regimes including the laminar and turbulent flows are calculated via the proposed algorithm. In all the simulations, the numerical predicted IH is close to the range of experimental data. The results promisingly indicate that this multiscale approach can be used as a tool for predicting hemolysis and optimizing the hematologic design of other types of blood-wetting devices.
这项工作介绍了一种新的基于拉格朗日应变的模型,用于预测生物医学设备中的剪切诱导溶血。目前用于设备诱导溶血的计算模型通常利用从受损红细胞 (RBC) 释放到血浆中的游离血红蛋白 (Hb) 的经验拟合。这些经验相关性包含依赖于特定设备和操作条件的参数,因此不能用于一般设备的溶血预测。所提出的算法没有任何经验参数,因此可以用于预测各种亲水性医疗设备中的溶血。与经验相关性不同,经验相关性中的 Hb 释放与剪切应力和暴露时间有关,而不考虑物理过程,所提出的模型将 RBC 膜的流致变形与膜通透性和 Hb 释放联系起来。在这种方法中,一旦在规定的操作条件下获得设备内血流的稳态数值解,就从设备的入口到出口跟踪样本路径线,以计算剪切应力张量的历史。在求解流体流动时,假设 RBC 对流动模式没有任何影响。沿着每条路径线,剪切应力张量将被输入到粗粒 (CG) RBC 模型中,以计算 RBC 变形。然后,应用从分子动力学 (MD) 模拟中获得的相关性,将局部 RBC 变形面积与 RBC 膜上的穿孔面积相关联。最后,通过考虑 Hb 分子大小引起的空间位阻和水动力阻力增加的扩散方程,在每条路径线上计算出瞬态孔中释放的 Hb。通过在计算域中的所有路径线上积分释放的 Hb 来计算总溶血指数 (IH)。通过所提出的算法计算了不同流动状态(包括层流和湍流)下食品和药物管理局 (FDA) 喷嘴和两种血泵(即 CentriMag 血泵(离心泵)和 HeartMate II(轴流泵))产生的溶血。在所有模拟中,数值预测的 IH 接近实验数据的范围。结果有希望表明,这种多尺度方法可以用作预测溶血和优化其他类型亲水性设备血液设计的工具。