Ding Min, Zhang Yan, Guo Yanglong, Hua Wenchao, Yang Jing, Wang Li, Guo Yun, Dai Qiguang, Wang Aiyong, Zhan Wangcheng
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
Environ Sci Technol. 2025 Jan 14;59(1):956-967. doi: 10.1021/acs.est.4c09658. Epub 2025 Jan 6.
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst. These particles adsorbed chlorine species with greater efficiency during the CVOCs combustion, thereby protecting the oxygen vacancies. Therefore, the double sites, oxygen vacancy to oxidize and RuO to adsorb chlorine species, on the Ru/SnO catalyst led to a notable enhancement in activity, stability, and byproduct selectivity. In contrast, the high dispersion of Ru species on the CeO support, as the typical catalyst for chlorinated hydrocarbon combustion, gave rise to a predominantly Ru-O-Ce structure. This structure did not prevent the adsorption of chlorine species on the oxygen vacancies, resulting in deactivation at low temperatures and an increased polychlorinated byproduct concentration. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further corroborated the variation in the adsorption sites of chlorine species on the two catalysts. This work provides a new strategy for designing efficient Ru-based catalysts for catalytic CVOCs combustion.
氯代挥发性有机化合物(CVOCs)催化燃烧的主要瓶颈是失活以及源自沉积在催化剂上的氯物种的含氯副产物的生成。在此,基于晶格匹配原理制备了负载在SnO上的Ru(Ru/SnO)。由于RuO和SnO均为金红石相,Ru物种以高度分散的RuO颗粒形式存在于Ru/SnO催化剂上。这些颗粒在CVOCs燃烧过程中更有效地吸附氯物种,从而保护氧空位。因此,Ru/SnO催化剂上用于氧化的氧空位和用于吸附氯物种的RuO这两个位点导致活性、稳定性和副产物选择性显著提高。相比之下,作为氯代烃燃烧的典型催化剂,Ru物种在CeO载体上的高度分散导致主要形成Ru-O-Ce结构。这种结构不能阻止氯物种在氧空位上的吸附,导致在低温下失活以及多氯副产物浓度增加。原位漫反射红外傅里叶变换光谱(DRIFTS)进一步证实了两种催化剂上氯物种吸附位点的变化。这项工作为设计用于催化CVOCs燃烧的高效Ru基催化剂提供了一种新策略。