Ugi Dávid, Musza Alexandra, Groma István, Glenneberg Jens, Schwenzel Julian, Ispánovity Péter Dusán, Kun Robert
HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.
Department of Materials Physics, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/a, 1117 Budapest, Hungary.
ACS Omega. 2024 Dec 17;9(52):51221-51227. doi: 10.1021/acsomega.4c07378. eCollection 2024 Dec 31.
Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms. Our work presents nanoindentation experiments including spherical tips, revealing a novel mechanical behavior of a sudden deformation event followed by slower but complete strain recovery during unloading. This unique deformation phenomenon is likely linked to the material's special structure, featuring isolated phosphate tetrahedra P(O,N) embedded in an amorphous Li matrix with occasional N bridge bonds between tetrahedra. In this study, the authors report on a range of nanoindentation experiments, examining how instability depends on strain rate and the indenter's tip geometry. It is found that instability occurs only within a specific range of deformation velocities and strongly depends on the indenter's tip sharpness. Assuming the mobility and the capability of the cooperative movement of the tetrahedra, the measured novel deformation method, and other, deformation-attached properties of the LiPON can be explained.
氮氧化锂磷(LiPON)因其具有足够的离子电导率,是全固态薄膜电池的关键电解质。了解LiPON薄膜的力学行为对于进一步的技术发展至关重要。先前的研究指出,在尖锐尖端压痕过程中,非晶态LiPON具有意外的延展性和应变恢复,揭示出堆积形成和致密化是主要的变形机制。我们的工作展示了包括球形尖端在内的纳米压痕实验,揭示了一种新颖的力学行为,即在卸载过程中出现突然变形事件,随后是较慢但完全的应变恢复。这种独特的变形现象可能与材料的特殊结构有关,其特征是孤立的磷酸四面体P(O,N)嵌入非晶态Li基体中,四面体之间偶尔存在N桥键。在这项研究中,作者报告了一系列纳米压痕实验,研究了不稳定性如何取决于应变率和压头的尖端几何形状。发现不稳定性仅在特定的变形速度范围内发生,并且强烈依赖于压头的尖端锐度。假设四面体的迁移率和协同运动能力,可以解释所测量的LiPON的新型变形方法以及其他与变形相关的特性。