Dhasarathaboopathy Mukhilan, Sabhapathy Palani, Gurkan Burcu
Department of Chemical and Biomolecular Engineering, Case Western Reserve University Cleveland OH USA
RSC Adv. 2025 Jan 2;15(1):94-100. doi: 10.1039/d4ra08378d.
Water-in-salt electrolytes provide an expanded electrochemical potential window, thus enabling a wide range of battery chemistries based on readily available salts and water. This study introduces a binary salt approach for achieving high K concentration with a tunable solvation sphere composed of acetate (Ac) and trifluoromethane sulfonate (OTf) anions, and water. Combining the hydrophilic low-cost potassium acetate with hydrophobic potassium trifluoromethane sulfonate salts, 36 molal liquid electrolyte, K(Ac)(OTf)·1.5HO, is achieved with an electrochemical stability window spanning from -1.74 V on the Al electrode to over 3 V on the Ti electrode, exceeding a total of 4.74 V and an ionic conductivity of 18 mS cm at 25 °C. Both the Raman and NMR analyses show strong water-Ac interactions within the primary solvation shell of K. In parallel, OTf is found to be outside of this shell disrupting the water O-H network, thus pushing water into the K solvation shell. Elimination of the free water molecules and the solvation disproportion resulting from the bi-salt approach underlie the enhanced transport properties and the electrochemical stability window. Therefore, the mixed bi-salt approach in water-in-salt electrolytes can be a promising and cost-effective solution for advancing potassium batteries.
盐包水电解质提供了一个扩展的电化学势窗,从而能够基于易于获得的盐和水实现多种电池化学体系。本研究介绍了一种二元盐方法,用于通过由醋酸根(Ac)和三氟甲磺酸根(OTf)阴离子以及水组成的可调溶剂化层来实现高钾浓度。将亲水性低成本醋酸钾与疏水性三氟甲磺酸钾盐相结合,得到了36molal的液体电解质K(Ac)(OTf)·1.5H₂O,其电化学稳定性窗口从铝电极上的-1.74V到钛电极上的超过3V,总计超过4.74V,在25℃下离子电导率为18mS cm⁻¹。拉曼光谱和核磁共振分析均表明,在钾的第一溶剂化层内存在强烈的水 - Ac相互作用。同时,发现OTf在该溶剂化层之外,破坏了水的O - H网络,从而将水推入钾溶剂化层。消除由双盐方法导致的自由水分子和溶剂化不均等现象是传输性能增强和电化学稳定性窗口增大的基础。因此,盐包水电解质中的混合双盐方法可能是推进钾电池发展的一种有前景且经济高效的解决方案。