Suppr超能文献

水系锂离子电池电解质中的离子网络

Ion Networks in Water-based Li-ion Battery Electrolytes.

作者信息

Kwak Kyungwon, Jeon Jonggu, Chun So Yeon, Cho Minhaeng

机构信息

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

Department of Chemistry, Korea University, Seoul 02841, Korea.

出版信息

Acc Chem Res. 2025 Jan 21;58(2):199-207. doi: 10.1021/acs.accounts.4c00629. Epub 2025 Jan 11.

Abstract

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.The availability of free water molecules is significantly reduced in WiSEs, leading to a shift in the solvation environment. Lithium ions (Li) typically travel with their solvation shells in dilute solutions and form stronger interactions with anions, resulting in the formation of complex ion aggregates. Despite the high viscosity of WiSEs, they exhibit surprisingly high ionic conductivity attributed to the decoupling of viscosity and ionic mobility. Instead of moving through free water, Li ions are transported along the pathways formed by the ion networks, minimizing direct solvent interaction and enhancing mobility.Advanced spectroscopic techniques, such as infrared IR pump-probe (IR-PP) and two-dimensional IR (2D-IR) spectroscopy, and molecular dynamics (MD) simulations have illuminated the critical role of these ion networks in facilitating transport. These studies have shown that even at extreme salt concentrations, some water molecules retain properties similar to bulk water, essential for fast ion movement. In WiSEs, bulk-like water molecules form transient hydrogen-bond networks that serve as conduits for Li ions, while anion-bound water molecules play a less active role in transport due to their slower dynamics.As the salt concentration increases, the structure of WiSEs becomes more dominated by 3D ion networks. MD simulations reveal that these networks, stabilized by chaotropic anions such as bis(trifluoromethanesulfonyl)imide (TFSI), disrupt the hydrogen-bonding network of water and provide a stable, interconnected structure that supports the movement of Li ions. The formation of these extensive ion networks is critical for maintaining ionic mobility and the electrochemical stability of the electrolyte.The shift from traditional vehicular transport mechanisms to structural diffusion is a hallmark of WiSEs. Li ions no longer move with their solvation shells but hop between coordination sites within the ion network. This structural diffusion mechanism enables high ionic mobility despite the reduced presence of water and the increased viscosity of the solution. In conclusion, the formation of ion networks and aggregates in WiSEs not only stabilizes the electrolyte but also drives an unconventional ion transport mechanism. By understanding and controlling these aggregates, WiSEs offer a pathway toward safer, high-performance electrolytes for LIBs and other aqueous energy storage technologies.

摘要

综述

盐包水电解质(WiSEs)是下一代锂离子电池(LIBs)很有前景的电解质,具有不可燃和安全性提高等关键优势。这些电解质具有极高的盐浓度,并呈现出独特的溶剂化结构和传输机制,其主导因素是离子网络和聚集体的形成。这些离子网络是WiSEs性能的核心,决定了电解质的传输特性和稳定性,与传统的稀水溶液或有机电解质不同。

在WiSEs中,自由水分子的可用性显著降低,导致溶剂化环境发生变化。锂离子(Li)在稀溶液中通常与其溶剂化壳层一起移动,并与阴离子形成更强的相互作用,从而形成复杂的离子聚集体。尽管WiSEs具有高粘度,但由于粘度与离子迁移率的解耦,它们表现出惊人的高离子电导率。Li离子不是通过自由水移动,而是沿着由离子网络形成的路径传输,从而使直接的溶剂相互作用最小化并提高迁移率。

先进的光谱技术,如红外红外泵浦 - 探测(IR - PP)和二维红外(2D - IR)光谱,以及分子动力学(MD)模拟,揭示了这些离子网络在促进传输方面的关键作用。这些研究表明,即使在极高的盐浓度下,一些水分子仍保留与本体水相似的性质,这对快速离子移动至关重要。在WiSEs中,类似本体的水分子形成瞬态氢键网络,作为Li离子的传导通道,而与阴离子结合的水分子由于其较慢的动力学在传输中起的作用较小。

随着盐浓度的增加,WiSEs的结构越来越由三维离子网络主导。MD模拟表明,这些由离液序列高的阴离子如双(三氟甲磺酰)亚胺(TFSI)稳定的网络,破坏了水的氢键网络,并提供了一个稳定的、相互连接的结构来支持Li离子的移动。这些广泛的离子网络的形成对于维持离子迁移率和电解质的电化学稳定性至关重要。

从传统的载体传输机制向结构扩散的转变是WiSEs的一个标志。Li离子不再与其溶剂化壳层一起移动,而是在离子网络内的配位位点之间跳跃。这种结构扩散机制尽管水的存在减少且溶液粘度增加,但仍能实现高离子迁移率。总之,WiSEs中离子网络和聚集体的形成不仅稳定了电解质,还驱动了一种非常规的离子传输机制。通过理解和控制这些聚集体,WiSEs为LIBs和其他水系储能技术提供了一条通往更安全、高性能电解质的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验