Suppr超能文献

超分辨率超声成像与剪切波弹性成像联合应用于乳腺肿块的鉴别诊断。

Combined use of super-resolution ultrasound imaging and shear-wave elastography for differential diagnosis of breast masses.

作者信息

Lei Yu-Meng, Liu Chen, Hu Hai-Man, Li Nan, Zhang Ning, Wang Qi, Zeng Shu-E, Ye Hua-Rong, Zhang Ge

机构信息

Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China.

Medical College, Wuhan University of Science and Technology, Wuhan, China.

出版信息

Front Oncol. 2024 Dec 20;14:1497140. doi: 10.3389/fonc.2024.1497140. eCollection 2024.

Abstract

OBJECTIVES

Shear-wave elastography (SWE) provides valuable stiffness within breast masses, making it a useful supplement to conventional ultrasound imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular visualization, aiding in the differential diagnosis of breast masses. Current clinical ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound. The combined diagnostic potential of tissue stiffness and microvascular characteristics, two critical tumor biomarkers, remains insufficiently explored. This study aims to evaluate the correlation between the elastic modulus, assessed using SWE, and microvascular characteristics captured through SRUS, in order to evaluate the effectiveness of combining these techniques in distinguishing between benign and malignant breast masses.

MATERIALS AND METHODS

In this single-center prospective study, 97 patients underwent SWE to obtain parameters including maximum elasticity (Emax), minimum elasticity (Emin), mean elasticity (Emean), standard deviation of elasticity (Esd), and elasticity ratio. SRUS was used to calculate the microvascular flow rate and microvessel density (MVD) within the breast masses. Spearman correlation analysis was used to explore correlations between Emax and MVD. Receiver operating characteristic curves and nomogram were employed to assess the diagnostic efficacy of combining SRUS with SWE, using pathological results as the gold standard.

RESULTS

Emax, Emean, Esd, and MVD were significantly higher in malignant breast masses compared to benign ones ( < 0.001), while Emin was significantly lower in malignant masses ( < 0.05). In Spearman correlation analysis, Emax was significantly positively correlated with MVD ( < 0.01). The area under the curve for SRUS combined with SWE (0.924) was significantly higher than that for SWE (0.883) or SRUS (0.830) alone ( < 0.001), thus indicating improved diagnostic accuracy. The decision curve analysis of the nomogram indicated that SWE combined with SRUS model had a higher net benefit in predicting breast cancer.

CONCLUSIONS

The MVD of the breast mass shows a significant positive correlation with Emax. By integrating SRUS with SWE, this study proposes a novel diagnostic approach designed to improve specificity and accuracy in breast cancer detection, surpassing the limitations of current ultrasound-based methods. This approach shows promise for early breast cancer detection, with the potential to reduce the need for unnecessary biopsies and improve patient outcomes.

摘要

目的

剪切波弹性成像(SWE)可提供乳腺肿块内有价值的硬度信息,是传统超声成像的有益补充。超分辨率超声(SRUS)成像可增强微血管可视化,有助于乳腺肿块的鉴别诊断。目前乳腺癌的临床超声诊断主要依赖于灰阶超声。组织硬度和微血管特征这两种关键肿瘤生物标志物的联合诊断潜力仍未得到充分探索。本研究旨在评估使用SWE评估的弹性模量与通过SRUS获取的微血管特征之间的相关性,以评估联合应用这些技术鉴别乳腺良恶性肿块的有效性。

材料与方法

在这项单中心前瞻性研究中,97例患者接受了SWE检查以获取包括最大弹性(Emax)、最小弹性(Emin)、平均弹性(Emean)、弹性标准差(Esd)和弹性比等参数。使用SRUS计算乳腺肿块内的微血管流速和微血管密度(MVD)。采用Spearman相关分析探讨Emax与MVD之间的相关性。以病理结果为金标准,采用受试者工作特征曲线和列线图评估SRUS与SWE联合应用的诊断效能。

结果

与良性乳腺肿块相比,恶性乳腺肿块的Emax、Emean、Esd和MVD显著更高(<0.001),而恶性肿块的Emin显著更低(<0.05)。在Spearman相关分析中,Emax与MVD显著正相关(<0.01)。SRUS联合SWE的曲线下面积(0.924)显著高于单独的SWE(0.883)或SRUS(0.830)(<0.001),表明诊断准确性提高。列线图的决策曲线分析表明,SWE联合SRUS模型在预测乳腺癌方面具有更高的净效益。

结论

乳腺肿块的MVD与Emax呈显著正相关。通过将SRUS与SWE相结合,本研究提出了一种新的诊断方法,旨在提高乳腺癌检测的特异性和准确性,超越当前基于超声方法的局限性。这种方法在早期乳腺癌检测方面显示出前景,有可能减少不必要活检的需求并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d6a/11695221/9a4e24911d3c/fonc-14-1497140-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验