Suppr超能文献

最小临床重要差异评估中的多重调整问题。

The problem of multiple adjustments in the assessment of minimal clinically important differences.

作者信息

de Oliveira Fabricio Ferreira

机构信息

Escola Paulista de Medicina Federal University of São Paulo (UNIFESP) São Paulo Brazil.

出版信息

Alzheimers Dement (N Y). 2025 Jan 3;11(1):e70032. doi: 10.1002/trc2.70032. eCollection 2025 Jan-Mar.

Abstract

INTRODUCTION

Anthropometric, demographic, genetic, and clinical features may affect cognitive, behavioral, and functional decline, while clinical trials seldom consider minimal clinically important differences (MCIDs) in their analyses.

METHODS

MCIDs were reviewed taking into account features that may affect cognitive, behavioral, or functional decline in clinical trials of new disease-modifying therapies.

RESULTS

The higher the number of comparisons of different confounders in statistical analyses, the lower values will be significant. Proper selection of confounders is crucial to accurately assess MCIDs without compromising statistical significance.

DISCUSSION

Statistical adjustment of the significance of MCIDs according to multiple comparisons is essential for the generalizability of research results. Wider inclusion of confounding variables in the statistics may help bring trial results closer to real-world conditions and improve the prediction of the efficacy of new disease-modifying therapies, though such factors must be carefully selected not to compromise the statistical significance of the analyses.

HIGHLIGHTS

Anthropometric, demographic, and clinical features may affect cognitive, behavioral, and functional decline.Clinical trials seldom take minimal clinically important differences (MCIDs) or their confounders into account.Generalizability of research results requires the assessment of multiple confounding factors.The higher the number of comparisons involved, the lower values will be considered significant.Use of MCIDs adjusted for confounding factors should be implemented when outcomes are not susceptible to translation into absolute benefits.

摘要

引言

人体测量学、人口统计学、遗传学和临床特征可能会影响认知、行为和功能衰退,而临床试验在分析中很少考虑最小临床重要差异(MCID)。

方法

在新的疾病修饰疗法的临床试验中,考虑可能影响认知、行为或功能衰退的特征来审查最小临床重要差异。

结果

统计分析中不同混杂因素的比较次数越多,显著值就越低。正确选择混杂因素对于在不影响统计显著性的情况下准确评估最小临床重要差异至关重要。

讨论

根据多重比较对最小临床重要差异的显著性进行统计调整对于研究结果的普遍性至关重要。在统计中更广泛地纳入混杂变量可能有助于使试验结果更接近现实情况,并改善对新的疾病修饰疗法疗效的预测,不过必须谨慎选择这些因素,以免影响分析的统计显著性。

要点

人体测量学、人口统计学和临床特征可能会影响认知、行为和功能衰退。临床试验很少考虑最小临床重要差异(MCID)或其混杂因素。研究结果的普遍性需要评估多个混杂因素。涉及的比较次数越多,显著值就越低。当结果不易转化为绝对益处时,应采用针对混杂因素进行调整的最小临床重要差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/031d/11696022/66f3e7eceee1/TRC2-11-e70032-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验