Suppr超能文献

用于3D打印的可见光驱动聚合反应

Visible-Light-Fueled Polymerizations for 3D Printing.

作者信息

Stevens Lynn M, Almada Nirvana T, Kim Hyeong Seok, Page Zachariah A

机构信息

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

出版信息

Acc Chem Res. 2025 Jan 21;58(2):250-260. doi: 10.1021/acs.accounts.4c00680. Epub 2025 Jan 6.

Abstract

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics. Our research addresses key limitations in current photopolymerization methods, such as the reliance on high-energy UV light, oxygen sensitivity, and narrow materials scope. We present a comprehensive overview of our advancements in both light-fueled radical and nonradical chemistry and its implementation in vat photopolymerization 3D printing using panchromatic resins. In radical chemistry, we have developed a class of boron dipyrromethene (BODIPY) dye molecules that act as photoradical generators (PRGs). Upon exposure to visible or near-infrared (NIR) light, these molecules induced efficient polymerization of acrylics. Structural modifications, including the installment of halogens, twisted aromatic groups, nitrogen bridgeheads, and thiophenes, have imbued activity across this wide spectral range. Systematic photophysical characterization of these dyes revealed the presence of long-lived excited (high in energy) states, from which we accredited the enhancements in polymerization efficiency. In turn, curing (converting a liquid to solid) with low intensity visible-to-NIR light was possible in mere seconds; a requirement for many light-based 3D printing technologies. Our efforts in nonradical chemistry have been motivated by the need for new materials with properties and functionality currently inaccessible using radical-based 3D printing approaches (e.g., tough and recyclable), while also providing an avenue toward multimaterial fabrication. We have developed photobase generators (PBGs) - dyes that release basic cargo upon light exposure-to catalyze polymerizations beyond acrylic-only resins. These include coumarinylmethyl- and BODIPY-tetramethylguanidine (TMG) derivatives, as well as onium photocages, which enabled photocuring of thiol-ene and thiol-isocyanate resins. Lastly, we have pioneered rapid, high-resolution visible-to-NIR light-based 3D printing. Our work includes the development of reactive photoredox catalyst systems for speed, additives for oxygen-tolerance, NIR-light reactivity for nanoparticle composites, models for streamlined optimization, and triplet fusion for high resolution. These advancements led to build speeds up to 45 mm/h with features <100 μm, rivaling contemporary UV-based technologies. The impact of our research extends beyond academic interest, offering practical solutions for additive manufacturing of (multi)functional materials. By enabling the use of lower-energy light sources, our work paves the way for environmentally friendly, cost-effective, and versatile 3D printing. It opens new possibilities for printing with previously incompatible materials, including UV-sensitive compounds and high-refractive-index nanocomposites. Nascent developments in multimaterial 3D printing via color- and dose-controlled light exposure are enabling the production of objects with precise placement of materials having disparate composition and properties. As we continue to develop photopolymerizations and light-based 3D printing, we anticipate transformative applications in fields ranging from tissue engineering to advanced electronics manufacturing. This will bring the community one step closer to fulfill the dream of creators only being "limited by imagination".

摘要

综述

光驱动聚合及其在3D打印中的应用已经彻底改变了从医疗保健到美术等各个领域的制造方式。尽管有一个广为流传的观念,即对于3D打印来说“唯一的限制就是想象力”,但我们和科学界的其他人士已经发现了一些基本障碍,这些障碍限制了我们在这个领域的能力。在此,我们描述了该团队在开发光化学系统方面所做的努力,这些系统能够响应非传统颜色的光,从而引发塑料的快速、时空可控的形成。我们的研究解决了当前光聚合方法中的关键限制,例如对高能紫外光的依赖、对氧气的敏感性以及材料范围狭窄等问题。我们全面概述了我们在光驱动自由基化学和非自由基化学方面的进展,以及它们在使用全色树脂的光固化3D打印中的应用。在自由基化学方面,我们开发了一类硼二吡咯亚甲基(BODIPY)染料分子,它们作为光自由基发生器(PRG)。在暴露于可见光或近红外(NIR)光时,这些分子会引发丙烯酸类的高效聚合。结构修饰,包括安装卤素、扭曲的芳基、氮桥头和噻吩,赋予了在这个宽光谱范围内的活性。对这些染料的系统光物理表征揭示了长寿命激发(高能)态的存在,我们据此认为聚合效率得到了提高。反过来,仅需几秒钟就可以用低强度的可见光到近红外光进行固化(将液体转化为固体);这是许多基于光的3D打印技术的一个要求。我们在非自由基化学方面的努力是出于对新型材料的需求,这些材料具有目前使用基于自由基的3D打印方法无法获得的性能和功能(例如,坚韧且可回收),同时也为多材料制造提供了一条途径。我们开发了光碱发生器(PBG)——在光照下释放碱性物质的染料——以催化除丙烯酸类树脂之外的聚合反应。这些包括香豆素甲基和BODIPY - 四甲基胍(TMG)衍生物,以及鎓光笼,它们能够实现硫醇 - 烯和硫醇 - 异氰酸酯树脂的光固化。最后,我们开创了基于可见光到近红外光的快速、高分辨率3D打印。我们的工作包括开发用于提高速度的反应性光氧化还原催化剂系统、用于耐氧性的添加剂、用于纳米颗粒复合材料的近红外光反应性、用于简化优化的模型以及用于高分辨率的三线态融合。这些进展使得构建速度达到45毫米/小时,特征尺寸小于100微米,可与当代基于紫外光的技术相媲美。我们研究的影响超出了学术兴趣,为(多)功能材料的增材制造提供了实际解决方案。通过能够使用能量较低的光源,我们的工作为环保、经济高效且通用的3D打印铺平了道路。它为使用以前不相容的材料进行打印开辟了新的可能性,包括对紫外光敏感的化合物和高折射率纳米复合材料。通过颜色和剂量控制的光曝光进行多材料3D打印方面的新进展,使得能够生产出具有不同组成和性质的材料精确放置的物体。随着我们继续开发光聚合和基于光的3D打印,我们预计在从组织工程到先进电子制造等领域会有变革性的应用。这将使这个领域离实现创作者“仅受想象力限制”的梦想又近了一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验