Suppr超能文献

一种基于真菌-生物炭的高效系统,用于推进复合污染的可持续管理。

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

作者信息

Xia Ying, Deng Minghui, Zhang Tao, Yu Junjun, Lin Xinda

机构信息

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.

出版信息

Environ Pollut. 2025 Feb 15;367:125649. doi: 10.1016/j.envpol.2025.125649. Epub 2025 Jan 4.

Abstract

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains. Herein, we developed a Trichoderma reesei-Laccase (LAC)-Biochar coupling system (TLBS), based on the structural and electrostatic analyses of LAC's metal-chelated active site (T1 Cu), for the sustainable remediation of combined pollutants, including HMs. In the TLBS, genetically engineered T. reesei produces a mutated LAC with enhanced binding capability for HMs (Ni and Cd). The TLBS enables high-efficiency remediation through three steps. First, lignin-derived biochar serves as both a supportive carrier and an inducer, initiating LAC expression. Second, natural mediators are released due to the interaction between biochar and T. reesei, and LAC is activated by environmental HMs and natural mediators. Finally, TLBS achieved significant reductions in the available concentrations of Ni (93.63%) and Cd (89.68%) and efficiently remediated multiple organic pollutants (71.41-96.79%), including antibiotics and pesticides. Furthermore, the synergistic interaction among TLBS components ensures long-term remediation effects in environments rich in agricultural biomass, making it ideal for eco-friendly farming practices. This in situ amendment strategy, utilizing only green, biodegradable lignocellulosic wastes and environmentally friendly fungi, offers new pathways for the sustainable management of combined contamination and the improvement of human health.

摘要

重金属(HM)污染对全球环境构成重大威胁,影响生态系统、公众健康和可持续发展。真菌作为化学处理的环保替代品,有潜力降低污染土壤中重金属的生物有效性,同时促进植物生长。然而,目前的真菌修复方法在效率、长期有效性以及应对复合污染(特别是天然菌株)的能力方面存在局限性。在此,我们基于对漆酶(LAC)金属螯合活性位点(T1 Cu)的结构和静电分析,开发了一种里氏木霉 - 漆酶 - 生物炭耦合系统(TLBS),用于包括重金属在内的复合污染物的可持续修复。在TLBS中,基因工程改造的里氏木霉产生一种对重金属(镍和镉)具有增强结合能力的突变漆酶。TLBS通过三个步骤实现高效修复。首先,木质素衍生的生物炭既是支持载体又是诱导剂,启动漆酶表达。其次,由于生物炭与里氏木霉之间的相互作用释放出天然介质,漆酶被环境中的重金属和天然介质激活。最后,TLBS使镍(93.63%)和镉(89.68%)的有效浓度显著降低,并有效修复了多种有机污染物(71.41 - 96.79%),包括抗生素和农药。此外,TLBS各组分之间的协同相互作用确保了在富含农业生物质的环境中的长期修复效果,使其成为生态友好型农业实践的理想选择。这种原位改良策略仅利用绿色、可生物降解的木质纤维素废物和环境友好型真菌,为复合污染的可持续管理和人类健康改善提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验