Wang Sheng, Yu Zu-Guo, Han Guo-Sheng, Sun Xin-Gen
National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan 411105, China; Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China.
National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan 411105, China; Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China.
Int J Biol Macromol. 2025 Mar;297:139519. doi: 10.1016/j.ijbiomac.2025.139519. Epub 2025 Jan 4.
There is increasing evidence that the subcellular localization of long noncoding RNAs (lncRNAs) can provide valuable insights into their biological functions. In terms of transcriptomes, lncRNAs were usually found in multiple subcellular localizations. Although several computational methods have been developed to predict the subcellular localization of lncRNAs, few of them were designed for lncRNAs that have multiple subcellular localizations. In this study, we propose a novel deep learning model, called CFPLncLoc, which uses chaos game representation (CGR) images of lncRNA sequences to predict multi-label lncRNA subcellular localization. CFPLncLoc utilizes image update strategy (IUS) to enhance the relative feature representation of the CGR images. To extract higher-level features from CGR images, CFPLncLoc introduces the multi-scale feature fusion (MFF) model, centralized feature pyramid (CFP), from the field of computer vision (CV). Ablation studies confirmed the contribution of the IUS and CFP in improving the prediction performance. Statistical test results verify that CFPLncLoc outperforms existing state-of-the-art predictors under the evaluation metric MaAUC on the hold-out/independent test set. The source code can be obtained from https://github.com/ShengWang-XTU/CFPLncLoc.
越来越多的证据表明,长链非编码RNA(lncRNA)的亚细胞定位能够为其生物学功能提供有价值的见解。就转录组而言,lncRNA通常存在于多个亚细胞定位中。尽管已经开发了几种计算方法来预测lncRNA的亚细胞定位,但其中很少有针对具有多个亚细胞定位的lncRNA设计的。在本研究中,我们提出了一种名为CFPLncLoc的新型深度学习模型,它使用lncRNA序列的混沌游戏表示(CGR)图像来预测多标签lncRNA亚细胞定位。CFPLncLoc利用图像更新策略(IUS)来增强CGR图像的相对特征表示。为了从CGR图像中提取更高层次的特征,CFPLncLoc引入了来自计算机视觉(CV)领域的多尺度特征融合(MFF)模型——集中式特征金字塔(CFP)。消融研究证实了IUS和CFP在提高预测性能方面的作用。统计测试结果验证了在留出/独立测试集上的评估指标MaAUC下,CFPLncLoc优于现有的最先进预测器。源代码可从https://github.com/ShengWang-XTU/CFPLncLoc获得。