Zhang Yuekun, Lang Zhongling, Zhang Qiu, Yao Ruiqi, Tang Wensi, Qiu Tianyu, Li Yingqi, Tan Huaqiao, Wang YongHui, Li YangGuang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China.
School of Chemistry and Chemical Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying, Shandong 257061, China.
Nano Lett. 2025 Jan 15;25(2):828-836. doi: 10.1021/acs.nanolett.4c05315. Epub 2025 Jan 6.
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active NiP into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@NiP/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a NiP/CoP shell. By virtue of the thermodynamically optimal NiP/CoP heterostructure, along with overall fast electron transport in a core-shell integrated electrode, NiCo@NiP/CoP with abundant interfacial structure attains a great nitrobenzene conversion of 94.3%, especially prominent azobenzene selectivity of 97.2%, and Faradaic efficiency of 94.1% at -0.9 V (vs Hg/HgO). High-purity azobenzene crystals can also self-separate under refrigeration postelectrolysis. This work provides an energy-efficient and scalable pathway for the economical preparation of azobenzene in the electrocatalytic nitrobenzene hydrogenation.
通过氢化和N-N偶联反应,可通过高选择性电催化硝基苯还原制备偶氮苯,提供了一条温和、经济高效且可持续的工业路线。受密度泛函理论计算的启发,将具有H活性的NiP引入CoP中,可降低水离解能垒、优化H吸附并调节关键中间体的吸附,有望提高其一步电合成偶氮苯的氢化能力。合成了一种自支撑的NiCo@NiP/CoP纳米棒阵列电极,其特点是在NiP/CoP壳层内含有NiCo合金纳米颗粒。凭借热力学最优的NiP/CoP异质结构,以及核壳集成电极中整体快速的电子传输,具有丰富界面结构的NiCo@NiP/CoP在-0.9 V(相对于Hg/HgO)时实现了94.3%的高硝基苯转化率、尤为突出的97.2%的偶氮苯选择性以及94.1%的法拉第效率。高纯度偶氮苯晶体在电解后冷藏条件下也能自行分离。这项工作为电催化硝基苯氢化制备偶氮苯提供了一条节能且可扩展的经济途径。