Gili Albert, Kunz Martin, Gaissmaier Daniel, Jung Christoph, Jacob Timo, Lunkenbein Thomas, Hetaba Walid, Dembélé Kassiogé, Selve Sören, Schomäcker Reinhard, Gurlo Aleksander, Bekheet Maged F
Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
Institut für Chemie, Technische Universität Berlin, Sekretariat TC 8, Straße des 17. Juni 124, 10623 Berlin, Germany.
ACS Nano. 2025 Jan 21;19(2):2769-2776. doi: 10.1021/acsnano.4c15300. Epub 2025 Jan 6.
Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application. Pure nickel finds niche applications, mainly focusing on catalysis, while nickel alloys are widely applied, , in gas turbines, reactors, and seawater piping. Nickel carbide (NiC) is the well-known stable Ni-C system displaying a rhombohedral (3̅) crystal structure. Some reports describe an elusive cubic Ni-C system, observed during certain catalytic reactions occurring on nickel and formed by the occupation of the interstitials of the metal with carbon: to date, the stabilization and characterization of this phase have not been accomplished. Hereby, we report on the synthesis of a cubic metastable NiC phase using chemical vapor deposition of methane on supported nickel nanoparticles. The structure was predicted by DFT/ReaxFF, synthesized and monitored with time-resolved synchrotron XRD, and experimentally confirmed by Rietveld refinement and (S)TEM-EELS under ambient conditions. The results show an 3̅ phase with a lattice parameter of = 3.749 ± 0.037 Å at room temperature, with the highest ever reported atomic percentage of carbon occupying the octahedral interstices of 23.1%, resulting in a NiC phase. The degree of occupation of the interstitial voids by carbon can be controlled, enabling the tuning of the host metal's -spacing and composition, highlighting the applicability of this synthesis route for catalytic nanoparticle preparation.
铁中碳的亚稳间隙固溶体,动力学上有利但热力学上不稳定,已得到充分理解。碳可占据主体金属的间隙原子,改变其性能。主体金属的合金化导致FeC相稳定,拓宽了其应用范围。纯镍有特定的应用领域,主要集中在催化方面,而镍合金则广泛应用于燃气轮机、反应堆和海水管道等。碳化镍(NiC)是著名的稳定Ni-C体系,具有菱面体(3̅)晶体结构。一些报告描述了一种难以捉摸的立方Ni-C体系,在镍上发生的某些催化反应过程中观察到,由碳占据金属间隙形成:迄今为止,该相的稳定化和表征尚未完成。在此,我们报告了通过在负载型镍纳米颗粒上化学气相沉积甲烷合成立方亚稳NiC相的方法。通过DFT/ReaxFF预测结构,用时间分辨同步加速器XRD合成并监测,在环境条件下通过Rietveld精修和(S)TEM-EELS进行实验确认。结果表明,在室温下存在一个晶格参数a = 3.749 ± 0.037 Å的3̅相,碳占据八面体间隙的原子百分比高达23.1%,这是迄今报道的最高值,从而形成了一个NiC相。碳对间隙空位的占据程度可以控制,从而能够调节主体金属的晶格间距和组成,突出了该合成路线在催化纳米颗粒制备中的适用性。