Feng Min, Tang Yu, Li Zhimin, Zhang Zhengfu, Li Chengping, Bao Rui, Yi Jianhong, Chen Jiangzhao, Wang Jinsong
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming, 650500, P. R. China.
Small. 2025 Feb;21(7):e2410752. doi: 10.1002/smll.202410752. Epub 2025 Jan 7.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.487/1.953 V at 10/1000 mA cm, and operating over 200 h at 1000 mA cm. Combining theoretical calculations and experiments reveal that phase transformation engineering can differentially regulate the active phases of HER/OER. In the HER, Ni/Fe-MnOOH and metallic NiFe act as the *OH and *H acceptors respectively to accelerates the water dissociation and subsequent Heyrovsky/Tafel step. While in the OER, the significant Jahn-Teller effect of Mn induces the surface reconstruction from Ni/Fe-MnOOH to Ni/Fe-MnO. The formative high value Mn can modify the M-O hybridization and activate the lattice oxygen mechanism, which is pivotal for breaking the restriction of volcanic relationship and reducing OER overpotential. These findings provide valuable design guidelines for high-performance multi-functional electrocatalysts via phase transformation engineering.
调节电子结构以平衡析氢反应(HER)和析氧反应(OER)的需求对于开发双功能催化剂至关重要。在此,利用相变工程分别调节催化剂结构,所设计的NiFe@Ni/Fe-MnOOH肖特基异质结在1M KOH中对HER和OER分别在10 mA cm时具有19和230 mV的低过电位,表现出显著的双功能电催化活性。同时,采用NiFe@Ni/Fe-MnOOH作为电极的阴离子交换膜水电解槽在10/1000 mA cm时显示出1.487/1.953 V的低电压,并在1000 mA cm下运行超过200小时。结合理论计算和实验表明,相变工程可以差异性地调节HER/OER的活性相。在HER中,Ni/Fe-MnOOH和金属NiFe分别作为OH和H受体,加速水的解离和随后的Heyrovsky/Tafel步骤。而在OER中,Mn的显著 Jahn-Teller 效应诱导表面从Ni/Fe-MnOOH重构为Ni/Fe-MnO。形成的高价Mn可以改变M-O杂化并激活晶格氧机制,这对于打破火山关系的限制和降低OER过电位至关重要。这些发现为通过相变工程设计高性能多功能电催化剂提供了有价值的指导方针。