Suppr超能文献

用于基因-环境相互作用分析的通路多基因风险评分(pPRS)

Pathway Polygenic Risk Scores (pPRS) for the Analysis of Gene-environment Interaction.

作者信息

Gauderman W James, Fu Yubo, Queme Bryan, Kawaguchi Eric, Wang Yinqiao, Morrison John, Brenner Hermann, Chan Andrew, Gruber Stephen B, Keku Temitope, Li Li, Moreno Victor, Pellatt Andrew J, Peters Ulrike, Samadder N Jewel, Schmit Stephanie L, Ulrich Cornelia M, Um Caroline, Wu Anna, Lewinger Juan Pablo, Drew David A, Mi Huaiyu

机构信息

Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.

Division of Bioinformatics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.

出版信息

bioRxiv. 2024 Dec 19:2024.12.16.628610. doi: 10.1101/2024.12.16.628610.

Abstract

A polygenic risk score (PRS) is used to quantify the combined disease risk of many genetic variants. For complex human traits there is interest in determining whether the PRS modifies, i.e. interacts with, important environmental (E) risk factors. Detection of a PRS by environment (PRS × E) interaction may provide clues to underlying biology and can be useful in developing targeted prevention strategies for modifiable risk factors. The standard PRS may include a subset of variants that interact with E but a much larger subset of variants that affect disease without regard to E. This latter subset will 'water down' the underlying signal in former subset, leading to reduced power to detect PRS × E interaction. We explore the use of pathway-defined PRS (pPRS) scores, using state of the art tools to annotate subsets of variants to genomic pathways. We demonstrate via simulation that testing targeted pPRS × E interaction can yield substantially greater power than testing overall PRS × E interaction. We also analyze a large study (N=78,253) of colorectal cancer (CRC) where E = non-steroidal anti-inflammatory drugs (NSAIDs), a well-established protective exposure. While no evidence of overall PRS × NSAIDs interaction (p=0.41) is observed, a significant pPRS × NSAIDs interaction (p=0.0003) is identified based on SNPs within the TGF-β / gonadotropin releasing hormone receptor (GRHR) pathway. NSAIDS is protective (OR=0.84) for those at the 5 percentile of the TGF-β/GRHR pPRS (low genetic risk, OR), but significantly more protective (OR=0.70) for those at the 95 percentile (high genetic risk). From a biological perspective, this suggests that NSAIDs may act to reduce CRC risk specifically through genes in these pathways. From a population health perspective, our result suggests that focusing on genes within these pathways may be effective at identifying those for whom NSAIDs-based CRC-prevention efforts may be most effective.

摘要

多基因风险评分(PRS)用于量化多种基因变异的综合疾病风险。对于复杂的人类性状,人们有兴趣确定PRS是否会修饰(即与……相互作用)重要的环境(E)风险因素。检测PRS与环境的相互作用(PRS×E)可能为潜在生物学机制提供线索,并有助于制定针对可改变风险因素的靶向预防策略。标准的PRS可能包括与E相互作用的变异子集,但也包括很大一部分不考虑E而影响疾病的变异子集。后一个子集将“淡化”前一个子集中的潜在信号,导致检测PRS×E相互作用的能力降低。我们探索使用通路定义的PRS(pPRS)评分,利用最先进的工具将变异子集注释到基因组通路上。我们通过模拟证明,测试靶向的pPRS×E相互作用比测试整体的PRS×E相互作用具有显著更高的效力。我们还分析了一项关于结直肠癌(CRC)的大型研究(N = 78253),其中E = 非甾体抗炎药(NSAIDs),这是一种公认的具有保护作用的暴露因素。虽然未观察到整体PRS×NSAIDs相互作用的证据(p = 0.41),但基于转化生长因子-β/促性腺激素释放激素受体(GRHR)通路内的单核苷酸多态性(SNP),确定了显著的pPRS×NSAIDs相互作用(p = 0.0003)。对于处于TGF-β/GRHR pPRS第5百分位数的人群(低遗传风险,OR),NSAIDs具有保护作用(OR = 0.84),但对于处于第95百分位数的人群(高遗传风险),其保护作用显著更强(OR = 0.70)。从生物学角度来看,这表明NSAIDs可能通过这些通路中的基因来特异性地降低CRC风险。从人群健康角度来看,我们的结果表明,关注这些通路中的基因可能有效地识别出基于NSAIDs的CRC预防措施可能最有效的人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6bf/11702571/ae3ec99ff5d2/nihpp-2024.12.16.628610v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验