Hammond Claire V, Henninger Heath B, Fregly Benjamin J, Gustafson Jonathan A
bioRxiv. 2024 Dec 22:2024.12.19.629415. doi: 10.1101/2024.12.19.629415.
The shoulder joint complex is prone to musculoskeletal issues, such as rotator cuff-related pain, which affect two-thirds of adults and often result in suboptimal treatment outcomes. Current musculoskeletal models used to understand shoulder biomechanics are limited by challenges in personalization, inaccuracies in predicting joint and muscle loads, and an inability to simulate anatomically accurate motions. To address these deficiencies, we developed a novel, personalized modeling framework capable of calibrating subject-specific joint centers and functional axes for the shoulder complex. Leveraging in vivo biplane fluoroscopy data and the recent Joint Model Personalization Tool from the Neuromusculoskeletal Modeling Pipeline, we optimized joint parameters and body scale factors for shoulder models with varying degrees of freedom (DOFs). We initially created and tested open-chain scapula-only models (3DOF, 4DOF, and 5DOF) and found that increasing DOFs improved accuracy, with the 5 DOF model yielding the lowest marker distance errors (average = 0.8 mm, maximum = 5.2 mm) as compared to biplane fluorscopy data of the scapula across eight movement trials. We subsequently created closed-chain shoulder models incorporating scapula, clavicle, and humerus bodies. We found closed-chain shoulder models with 5 DOFs for the scapula achieved the highest accuracy (average = 0.9 mm, maximum = 5.7 mm) and showed consistent performance across subjects (n=3) in leave-one-out cross-validation tests (average marker distance errors = 1.0 to 1.4 mm). This framework minimizes errors in joint kinematics and provides a foundation for future models incorporating personalized musculature and advanced simulations, enhancing its potential clinical utility for rehabilitation and surgical planning.
肩关节复合体容易出现肌肉骨骼问题,比如与肩袖相关的疼痛,这类问题影响了三分之二的成年人,并且常常导致治疗效果欠佳。目前用于理解肩部生物力学的肌肉骨骼模型存在局限性,包括个性化方面的挑战、预测关节和肌肉负荷的不准确,以及无法模拟解剖学上精确的运动。为了解决这些不足,我们开发了一种新颖的个性化建模框架,能够为肩部复合体校准特定个体的关节中心和功能轴。利用体内双平面荧光透视数据以及神经肌肉骨骼建模管道中最新的关节模型个性化工具,我们针对具有不同自由度(DOF)的肩部模型优化了关节参数和身体比例因子。我们最初创建并测试了仅肩胛骨的开链模型(3自由度、4自由度和5自由度),发现增加自由度可提高准确性,与肩胛骨在八项运动试验中的双平面荧光透视数据相比,5自由度模型产生的标记点距离误差最低(平均 = 0.8毫米,最大 = 5.2毫米)。随后,我们创建了包含肩胛骨、锁骨和肱骨干的闭链肩部模型。我们发现,肩胛骨具有5自由度的闭链肩部模型实现了最高的准确性(平均 = 0.9毫米,最大 = 5.7毫米),并且在留一法交叉验证测试中(平均标记点距离误差 = 1.0至1.4毫米),不同受试者(n = 3)之间表现一致。该框架将关节运动学误差降至最低,并为未来纳入个性化肌肉组织和高级模拟的模型奠定了基础,增强了其在康复和手术规划方面的潜在临床应用价值。