Chen Dong, Chen Chun-Long, Wei Guo-Wei
ArXiv. 2024 Dec 16:arXiv:2412.11386v1.
Metal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction. The model represents MOF structures as simplicial complexes and incorporates elemental categorizations to enable balanced, interpretable machine learning study. By integrating category-specific persistent homology, CSTL captures both global and local structural characteristics, rendering multi-dimensional, category-specific descriptors that support a predictive model with high accuracy and robustness across eight MOF datasets, outperforming all previous results. This alignment of topological and chemical features enhances the predictive power and interpretability of CSTL, advancing understanding of structure-property relationships of MOFs and promoting efficient material discovery.
金属有机框架(MOFs)是具有高比表面积、可调节孔隙率和结构可调性的多孔晶体材料,使其成为各种应用的理想选择。然而,传统的实验和计算方法具有有限的可扩展性和可解释性,阻碍了对MOF结构-性能关系的有效探索。为了应对这些挑战,我们首次引入了一种特定类别拓扑学习(CSTL)方法,该方法将代数拓扑与化学见解相结合,以进行可靠的性能预测。该模型将MOF结构表示为单纯复形,并纳入元素分类,以实现平衡、可解释的机器学习研究。通过整合特定类别的持久同调,CSTL捕获了全局和局部结构特征,生成了多维度、特定类别的描述符,支持在八个MOF数据集上具有高精度和鲁棒性的预测模型,优于所有先前的结果。拓扑和化学特征的这种匹配增强了CSTL的预测能力和可解释性,推进了对MOF结构-性能关系的理解,并促进了高效的材料发现。