Suppr超能文献

Reliable and streamlined model setup for digital twin assessment of fracture healing.

作者信息

Bahrami Mehran, Frew Kylie, Hughes John, Dailey Hannah L

机构信息

Department of Mechanical Engineering & Mechanics, Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015, USA.

College of Health, Lehigh University, 124 East Morton Street, Bethlehem, PA 18015, USA.

出版信息

J Biomech. 2025 Feb;180:112492. doi: 10.1016/j.jbiomech.2025.112492. Epub 2025 Jan 3.

Abstract

In large animal models of bone fracture repair, postmortem torsional testing is commonly used to assess healing biomechanics. Bending and axial tests are physiologically relevant, but much less commonly performed. Virtual torsional testing using image-based finite element models has been validated to postmortem bench tests, but its predictive value for capturing whole-bone mechanics and fracture healing quality under other physiologically relevant loading modes has not yet been established. Accordingly, the purpose of this study was to evaluate the association between mechanical biomarkers derived from virtual torsion, axial, and bending tests under strict alignment and malalignment conditions. Computed tomography (CT) scans from 24 intact and operated sheep tibiae and 29 human tibial fractures were used to create digital twins that were subjected to torsion, axial, and bending tests. The results indicated that torsional rigidity is a strong surrogate for bending flexural rigidity in both ovine and human bones. Torsional rigidity and axial stiffness were strongly correlated in the ovine data, but only moderately in human fractures due to the complex fracture patterns. Axial testing was highly prone to stiffness estimation errors as high as 50% if the applied load and anatomic axis were not perfectly aligned. In contrast, torsional rigidity had errors <1.3% for all malalignment scenarios. Based on this study, virtual torsional rigidity is the recommended summary mechanical biomarker of bone healing because it captures variations in healing biomechanics that are present in other loading modes with a simple setup that is insensitive to alignment error.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验