Hajari Nika, Knoll Megan, Lu Amy, Barber-Axthelm Isaac, Gale Michael
Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, USA.
Virology. 2025 Feb;603:110370. doi: 10.1016/j.virol.2024.110370. Epub 2024 Dec 28.
Zika virus (ZIKV) infection during pregnancy can cause congenital Zika virus syndrome (CZV), including fetal growth restriction and death. In the developing placenta, trophoblast cells respond to epidermal growth factor (EGF) to migrate into the decidua to facilitate implantation and fetal development. EGF activates the Akt protein kinase, a master regulator of trophoblast cell migration. Akt signaling and stability are dependent on heat shock protein 90 (HSP90), which mediates the maturation of proteins necessary for EGF/Akt signaling. Here we show that ZIKV infection inhibits EGF-mediated Akt activation and downstream signaling to suppress trophoblast migration. The ZIKV non-structural protein 5 (NS5) is sufficient to inhibit trophoblast migration through its binding interaction with HSP90, leading to suppression of Akt phosphorylation and inhibition of EGF-induced trophoblast migration. Thus, ZIKV NS5/HSP90 interactions play a key role in disruption of trophoblast function, revealing an underlying cause of improper placental development and fetal disease.
孕期感染寨卡病毒(ZIKV)可导致先天性寨卡病毒综合征(CZV),包括胎儿生长受限和死亡。在发育中的胎盘里,滋养层细胞对表皮生长因子(EGF)作出反应,迁移到蜕膜以促进着床和胎儿发育。EGF激活Akt蛋白激酶,这是滋养层细胞迁移的主要调节因子。Akt信号传导和稳定性依赖于热休克蛋白90(HSP90),它介导EGF/Akt信号传导所需蛋白质的成熟。在此我们表明,寨卡病毒感染会抑制EGF介导的Akt激活和下游信号传导,从而抑制滋养层细胞迁移。寨卡病毒非结构蛋白5(NS5)通过与HSP90的结合相互作用足以抑制滋养层细胞迁移,导致Akt磷酸化受抑制以及EGF诱导的滋养层细胞迁移受抑制。因此,寨卡病毒NS5/HSP90相互作用在滋养层细胞功能破坏中起关键作用,揭示了胎盘发育异常和胎儿疾病的潜在原因。