Suppr超能文献

基于节点注入的图的频谱对抗攻击。

Spectral adversarial attack on graph via node injection.

作者信息

Ou Weihua, Yao Yi, Xiong Jiahao, Wu Yunshun, Deng Xianjun, Gou Jianping, Chen Jiamin

机构信息

School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China.

School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China.

出版信息

Neural Netw. 2025 Apr;184:107046. doi: 10.1016/j.neunet.2024.107046. Epub 2025 Jan 1.

Abstract

Graph Neural Networks (GNNs) have shown remarkable achievements and have been extensively applied in various downstream tasks, such as node classification and community detection. However, recent studies have demonstrated that GNNs are vulnerable to subtle adversarial perturbations on graphs, including node injection attacks, which negatively affect downstream tasks. Existing node injection attacks have mainly focused on the limited local nodes, neglecting the analysis of the whole graph which restricts the attack's ability. In this paper, we propose a novel global graph attack method named Spectral Node Injection Attack (SpNIA), which takes into account the spectral distance to more effectively leverage the limited adversarial budgets. Specifically, we maximize the Euclidean distance of eigenvalues decomposed from the Laplacian matrices of original and injected graph, and solve the optimization problem by gradient-based methods. Due to the different dimensions of matrices in original and injected graph, we construct a novel optimization framework of the node injection attack which also allows injected nodes to connect with each other for more malicious message passing. Extensive experiments on benchmark datasets indicate significant decrease in GNNs performance and show empirical evidences to demonstrate the feasibility and effectiveness of SpNIA.

摘要

图神经网络(GNN)已取得显著成就,并已广泛应用于各种下游任务,如节点分类和社区检测。然而,最近的研究表明,GNN容易受到图上细微对抗性扰动的影响,包括节点注入攻击,这会对下游任务产生负面影响。现有的节点注入攻击主要集中在有限的局部节点上,而忽略了对整个图的分析,这限制了攻击能力。在本文中,我们提出了一种名为谱节点注入攻击(SpNIA)的新型全局图攻击方法,该方法考虑谱距离以更有效地利用有限的对抗预算。具体而言,我们最大化从原始图和注入图的拉普拉斯矩阵分解得到的特征值的欧几里得距离,并通过基于梯度的方法解决优化问题。由于原始图和注入图中矩阵的维度不同,我们构建了一个新颖的节点注入攻击优化框架,该框架还允许注入节点相互连接以进行更多恶意消息传递。在基准数据集上进行的大量实验表明,GNN的性能显著下降,并显示了经验证据来证明SpNIA的可行性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验