Hirtl Martin, Gottschalk Benjamin, Bachkoenig Olaf A, Oflaz Furkan E, Madreiter-Sokolowski Corina, Høydal Morten Andre, Graier Wolfgang F
Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria.
Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Technology and Science, 7030 Trondheim, Norway.
Biochim Biophys Acta Mol Cell Res. 2025 Mar;1872(3):119900. doi: 10.1016/j.bbamcr.2025.119900. Epub 2025 Jan 5.
The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions. To visualize the inner mitochondrial membrane, the STED-optimized dye called pkMitoRed was used. The study presented herein builds on the previously verified exclusive localization of MICU1 in the intermembrane space, and that MCU moves exclusively laterally along the inner mitochondrial membrane (IMM). We applied a multi-angled arrow histogram to analyze the distribution of proteins within mitochondria, providing a one-dimensional view of protein localization along a defined distance. Combining this with optimal transport colocalization enabled us to further predict submitochondrial protein distribution. Results indicate that in HeLa cells Ca elevation yielded MCU translocation from the cristae membrane (CM) to the inner boundary membrane (IBM). In AC16 cardiomyocyte cell line, MCU is mainly located at the IBM under resting conditions, and it translocates to the CM upon rising Ca. Our data describe a novel unbiased super-resolution image analysis approach. Our showcase sheds light on differences in spatial distribution dynamics of MCU in cell lines with different MICU1:MCU abundance.
线粒体对钙的摄取是各种组织中一个重要且受到严格调控的过程。参与该过程的关键蛋白即使发生微小变化也可能导致显著的细胞功能障碍,并最终导致细胞死亡。在本研究中,我们使用了受激发射损耗(STED)显微镜,并开发了一种无偏倚的方法来监测线粒体钙单向转运体(MCU)和线粒体钙摄取蛋白1(MICU1)在静息和刺激条件下的亚线粒体分布及动态变化。为了可视化线粒体内膜,使用了经过STED优化的染料pkMitoRed。本文提出的研究基于先前已证实的MICU1在线粒体膜间隙中的独特定位,以及MCU仅沿线粒体内膜(IMM)横向移动这一事实。我们应用多角度箭头直方图来分析线粒体中蛋白质的分布,提供了沿确定距离的蛋白质定位的一维视图。将此与最佳转运共定位相结合,使我们能够进一步预测亚线粒体蛋白质分布。结果表明,在HeLa细胞中,钙浓度升高导致MCU从嵴膜(CM)转运至内膜边界(IBM)。在AC16心肌细胞系中,静息条件下MCU主要位于IBM,钙浓度升高时它会转运至CM。我们的数据描述了一种新型的无偏倚超分辨率图像分析方法。我们的展示揭示了具有不同MICU1:MCU丰度的细胞系中MCU空间分布动态的差异。