Dentel Brianne, Angeles-Perez Lidiette, Flores Abigail Y, Lei Katherine, Ren Chongyu, Sanchez Andrea Pineda, Tsai Peter T
The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America.
The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience; O'Donnell Brain Institute, Dallas, TX, United States of America.
Neurobiol Dis. 2025 Feb;205:106790. doi: 10.1016/j.nbd.2025.106790. Epub 2025 Jan 5.
Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al., 2018; Dentel et al., 2022); however, studies focused on understanding mechanisms contributing to NDD-relevant behaviors are lacking, especially studies understanding the contributions of GATOR1's critical GAP catalytic subunit, nitrogen permease regulator like-2 (Nprl2). Given the clinical phenotypes observed in patients with Nprl2 mutations, in this study, we sought to investigate the neuronal cell type contributions of Nprl2 to NDD behaviors. We conditionally deleted Nprl2 broadly in most neurons (Synapsin1), in inhibitory neurons only (Vgat), and in Purkinje cells within the cerebellum (L7). Broad neuronal deletion of Nprl2 resulted in seizures, social and learning deficits, and hyperactivity. In contrast, deleting Nprl2 from inhibitory neurons led to increased motor learning, hyperactive behavior, in addition to social and learning deficits. Lastly, Purkinje cell (PC) loss of Nprl2 also led to learning and social deficits but did not affect locomotor activity. These phenotypes enhance understanding of the spectrum of disease found in human populations with GATOR1 loss of function and highlight the significance of distinct cellular populations to NDD-related behaviors. SIGNIFICANCE STATEMENT: We aim to elucidate the neuronal-specific contributions of nitrogen permease regulator like-2 (Nprl2) to its neurodevelopmental disorder (NDD)-relevant phenotypes. We conditionally deleted Nprl2 broadly in neurons (Syn1), in inhibitory neurons (Vgat), and in cerebellar Purkinje cells (L7). We identify seizures only in the Syn1 conditional mutant (cKO); hyperactivity, learning difficulties, social deficits, and impulsivity in the Syn1 and Vgat cKOs; and social deficits, and fear learning deficits in L7 cKOs. To our knowledge, we are the first to describe the behavioral contributions of Nprl2's function across multiple cell types. Our findings highlight both critical roles for Nprl2 in learning and behavior and also distinct contributions of select neuronal populations to these NDD-relevant behaviors.
对雷帕霉素复合物1(mTORC1)的机制靶点具有氨基酸敏感性负调控作用的GTP酶激活蛋白(GAP)活性朝向Rags-1(GATOR1)复合物的亚基功能丧失,与遗传性家族性癫痫和神经发育障碍(NDDs)均有关联(巴尔达萨里等人,2018年)。先前的研究发现,前脑兴奋性神经元中GATOR1功能的条件性缺失会导致癫痫发作表型和活性增加(尤斯卡蒂斯等人,2018年;登特尔等人,2022年);然而,缺乏专注于理解导致与NDD相关行为机制的研究,特别是缺乏理解GATOR1关键GAP催化亚基——氮通透酶调节蛋白样-2(Nprl2)作用的研究。鉴于在Nprl2突变患者中观察到的临床表型,在本研究中,我们试图探究Nprl2在神经元细胞类型对NDD行为的作用。我们在大多数神经元(突触素1)、仅在抑制性神经元(Vgat)以及小脑内的浦肯野细胞(L7)中条件性删除Nprl2。广泛的神经元Nprl2缺失导致癫痫发作、社交和学习缺陷以及多动。相比之下,从抑制性神经元中删除Nprl2除了导致社交和学习缺陷外,还会导致运动学习增加和多动行为。最后,浦肯野细胞(PC)中Nprl2的缺失也会导致学习和社交缺陷,但不影响运动活动。这些表型增强了我们对GATOR1功能丧失的人群中所发现疾病谱的理解,并突出了不同细胞群体对NDD相关行为的重要性。重要性声明:我们旨在阐明氮通透酶调节蛋白样-2(Nprl2)对其神经发育障碍(NDD)相关表型的神经元特异性作用。我们在神经元(Syn1)、抑制性神经元(Vgat)和小脑浦肯野细胞(L7)中广泛地条件性删除Nprl2。我们仅在Syn1条件性突变体(cKO)中发现癫痫发作;在Syn1和Vgat cKO中发现多动、学习困难、社交缺陷和冲动;在L7 cKO中发现社交缺陷和恐惧学习缺陷。据我们所知,我们是首个描述Nprl2功能在多种细胞类型中的行为作用的研究。我们的发现既突出了Nprl2在学习和行为中的关键作用,也突出了特定神经元群体对这些与NDD相关行为的不同作用。