de Freitas Mathias Paulo Cezar, Dantas Rodrigues Aline Milena, Lisboa Patrícia Cristina, Miranda Rosiane Aparecida, Malta Ananda, Ribeiro Tatiane Aparecida, Barella Luiz Felipe, Dias Ginislene, Lima Thalyne Aparecida Leite, Gomes Rodrigo Mello, de Moura Egberto Gaspar, de Oliveira Júlio Cezar
Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringá 87020-900, Brazil.
Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil.
Biology (Basel). 2024 Dec 11;13(12):1036. doi: 10.3390/biology13121036.
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.5% protein, NP group). At 90 days of age, male rat offspring were challenged with food deprivation (72 h of fasting), intracerebroventricular (icv) injection of dexamethasone (2 µL, 2.115 mmol/L) or chronic intraperitoneal injection of dexamethasone (1 mg/kg body weight/5 days). Body weight, food intake, intravenous glucose tolerance test (ivGTT) results, insulin secretion and biochemical parameters were assessed. LP rats did not display significant metabolic changes after long-term starvation ( > 0.05) or under the central effect of dexamethasone ( = 0.999). Chronic dexamethasone induced rapid hyperglycemia (~1.2-fold, < 0.001) and hyperinsulinemia (NP: 65%; LP: 216%; < 0.001), decreased insulin sensitivity (NP: ~2-fold; LP: ~4-fold; < 0.001), reduced insulinemia (20%) and increased glycemia (35%) only in NP rats under ivGTT conditions ( < 0.001). Glucose and acetylcholine insulinotropic effects, as well as the muscarinic receptor antagonist response, were reduced by chronic dexamethasone only in pancreatic islets from NP rats ( < 0.05). The direct effect of dexamethasone on pancreatic islets reduced insulin secretion (NP: 60.2%, < 0.001; LP: 33.8%, < 0.001). Peripheral glucose-insulin dyshomeostasis and functional failure of pancreatic islets in LP rats, as evidenced by an impaired acute and chronic response to metabolic stress, may be due to excessive corticosterone action as a long-term consequence.
围产期营养不良和糖皮质激素升高都是全球代谢性疾病大流行日益严重的关键触发因素。在此,我们研究了代谢应激反应性对雄性Wistar后代葡萄糖-胰岛素稳态和胰岛功能的影响,这些后代的母亲在哺乳期经历了蛋白质限制。在分娩后的前两周,给哺乳的母鼠喂食低蛋白(4%蛋白质,LP组)或正常蛋白饮食(22.5%蛋白质,NP组)。在90日龄时,对雄性大鼠后代进行禁食(72小时禁食)、脑室内(icv)注射地塞米松(2 μL,2.115 mmol/L)或慢性腹腔注射地塞米松(1 mg/kg体重/5天)的挑战。评估体重、食物摄入量、静脉葡萄糖耐量试验(ivGTT)结果、胰岛素分泌和生化参数。LP大鼠在长期饥饿(>0.05)或在地塞米松的中枢作用下(=0.999)未表现出明显的代谢变化。慢性地塞米松诱导快速高血糖(1.2倍,<0.001)和高胰岛素血症(NP:65%;LP:216%;<0.001),仅在ivGTT条件下降低NP大鼠的胰岛素敏感性(NP:2倍;LP:~4倍;<0.001),降低胰岛素血症(20%)并增加血糖(35%)(<0.001)。仅在NP大鼠的胰岛中,慢性地塞米松降低了葡萄糖和乙酰胆碱的促胰岛素作用以及毒蕈碱受体拮抗剂反应(<0.05)。地塞米松对胰岛的直接作用降低了胰岛素分泌(NP:60.2%,<0.001;LP:33.8%,<0.001)。LP大鼠外周葡萄糖-胰岛素稳态失调和胰岛功能衰竭,表现为对代谢应激的急性和慢性反应受损,这可能是长期过量皮质酮作用的结果。