Suppr超能文献

通过靶向基因检测降低乳腺癌和卵巢癌发病率:使用NEEMO微观模拟模型的估计

Reduced Breast and Ovarian Cancer Through Targeted Genetic Testing: Estimates Using the NEEMO Microsimulation Model.

作者信息

Petelin Lara, Cunich Michelle, Procopio Pietro, Schofield Deborah, Devereux Lisa, Nickson Carolyn, James Paul A, Campbell Ian G, Trainer Alison H

机构信息

Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne 3052, Australia.

Parkville Familial Cancer Centre, The Royal Melbourne Hospital, Melbourne 3052, Australia.

出版信息

Cancers (Basel). 2024 Dec 13;16(24):4165. doi: 10.3390/cancers16244165.

Abstract

The effectiveness and cost-effectiveness of genetic testing for hereditary breast and ovarian cancer largely rely on the identification and clinical management of individuals with a pathogenic variant prior to developing cancer. Simulation modelling is commonly utilised to evaluate genetic testing strategies due to its ability to synthesise collections of data and extrapolate over long time periods and large populations. Existing genetic testing simulation models use simplifying assumptions for predictive genetic testing and risk management uptake, which could impact the reliability of their estimates. Our objective was to develop a microsimulation model that accurately reflects current genetic testing and subsequent care in Australia, directly incorporating the dynamic nature of predictive genetic testing within families and adherence to cancer risk management recommendations. The populatioN gEnEtic testing MOdel (NEEMO) is a population-level microsimulation that incorporates a detailed simulation of individuals linked within five-generation family units. The genetic component includes heritable high- and moderate-risk monogenic gene variants, as well as polygenic risk. Interventions include clinical genetic services, breast screening, and risk-reducing surgery. Model validation is described, and then to illustrate a practical application, NEEMO was used to compare clinical outcomes for four genetic testing scenarios in patients newly diagnosed with breast cancer (BC) and their relatives: (1) no genetic testing, (2) current practice, (3) optimised referral for genetic testing, and (4) genetic testing for all BC. NEEMO accurately estimated genetic testing utilisation according to current practice and associated cancer incidence, pathology, and survival. Predictive testing uptake in first- and second-degree relatives was consistent with known prospective genetic testing data. Optimised genetic referral and expanded testing prevented up to 9.3% of BC and 4.1% of ovarian cancers in relatives of patients with BC. Expanding genetic testing eligibility to all BC patients did not lead to improvement in life-years saved in at-risk relatives compared to optimised referral of patients eligible for testing under current criteria. NEEMO is an adaptable and validated microsimulation model for evaluating genetic testing strategies. It captures the real-world uptake of clinical and predictive genetic testing and recommended cancer risk management, which are important considerations when considering real-world clinical and cost-effectiveness.

摘要

遗传性乳腺癌和卵巢癌基因检测的有效性和成本效益在很大程度上依赖于在患癌前对携带致病变异个体的识别和临床管理。由于模拟建模能够综合数据集合并在长时间和大群体中进行外推,因此常用于评估基因检测策略。现有的基因检测模拟模型对预测性基因检测和风险管理接受情况采用了简化假设,这可能会影响其估计的可靠性。我们的目标是开发一个微观模拟模型,该模型能准确反映澳大利亚当前的基因检测及后续护理情况,直接纳入家庭内部预测性基因检测的动态性质以及对癌症风险管理建议的遵循情况。人群基因检测模型(NEEMO)是一种人群水平的微观模拟,它包含了对五代家庭单位内相互关联个体的详细模拟。基因组成部分包括可遗传的高风险和中度风险单基因变异以及多基因风险。干预措施包括临床基因服务、乳腺筛查和降低风险手术。描述了模型验证过程,然后为说明实际应用,NEEMO被用于比较新诊断为乳腺癌(BC)患者及其亲属的四种基因检测方案的临床结果:(1)不进行基因检测,(2)当前做法,(3)优化基因检测转诊,(4)对所有乳腺癌患者进行基因检测。NEEMO根据当前做法准确估计了基因检测利用率以及相关的癌症发病率、病理情况和生存率。一级和二级亲属的预测性检测接受情况与已知的前瞻性基因检测数据一致。优化的基因转诊和扩大检测可预防乳腺癌患者亲属中高达9.3%的乳腺癌和4.1%的卵巢癌。与根据当前标准对符合检测条件的患者进行优化转诊相比,将基因检测资格扩大到所有乳腺癌患者并未使高危亲属的挽救生命年数得到改善。NEEMO是一个适用于评估基因检测策略且经过验证的微观模拟模型。它捕捉了临床和预测性基因检测在现实世界中的接受情况以及推荐的癌症风险管理情况,而这些在考虑现实世界中的临床和成本效益时是重要的考量因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/214e/11674464/41cbe55ee59d/cancers-16-04165-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验