Quiriny Marie, Rodrigues Vitόria Joel, Saiselet Manuel, Dom Geneviève, De Saint Aubain Nicolas, Willemse Esther, Digonnet Antoine, Dequanter Didier, Rodriguez Alexandra, Andry Guy, Detours Vincent, Maenhaut Carine
Institut Jules Bordet, HUB, Université libre de Bruxelles, 1070 Brussels, Belgium.
IRIBHM Jacques E. Dumont, Université libre de Bruxelles, 1070 Brussels, Belgium.
Cancers (Basel). 2024 Dec 18;16(24):4214. doi: 10.3390/cancers16244214.
The diagnosis of malignant thyroid nodules is mainly based on the fine-needle aspiration biopsy (FNAB). To improve the detection of malignant nodules, different molecular tests have been developed. We present a new molecular signature based on altered miRNA expressions and specific mutations.
This is a prospective non-interventional study, including all Bethesda categories, carried out on an FNAB sampled in suspicious nodule(s) during thyroidectomy. miRNA quantification and mutations detection were performed. The reference diagnosis was the pathological assessment of the surgical specimen. Different classification algorithms were trained with molecular data to correctly classify the samples.
A total of 294 samples were recorded and randomly divided in two equal groups. The random forest algorithm showed the highest accuracy and used mostly miRNAs to classify the nodules. The sensitivity and the specificity of our signature were, respectively, 76% and 96%, and the positive and negative predictive values were both 90% (disease prevalence of 30%).
We have identified a molecular classifier that combines miRNA expressions with mutations detection. This signature could potentially help clinicians, as complementary to the Bethesda classification, to discriminate indeterminate FNABs.
甲状腺恶性结节的诊断主要基于细针穿刺活检(FNAB)。为了提高恶性结节的检出率,已开发出不同的分子检测方法。我们提出了一种基于miRNA表达改变和特定突变的新分子特征。
这是一项前瞻性非干预性研究,纳入了所有贝塞斯达分类,对甲状腺切除术中可疑结节的FNAB样本进行研究。进行了miRNA定量和突变检测。参考诊断为手术标本的病理评估。使用分子数据训练不同的分类算法以正确分类样本。
共记录了294个样本,并随机分为两组。随机森林算法显示出最高的准确率,并且主要使用miRNA对结节进行分类。我们特征的敏感性和特异性分别为76%和96%,阳性和阴性预测值均为90%(疾病患病率为30%)。
我们鉴定出一种将miRNA表达与突变检测相结合的分子分类器。该特征可能有助于临床医生,作为贝塞斯达分类的补充,来鉴别不确定的FNAB。