Tsioulos Georgios, Vallianou Natalia G, Skourtis Alexandros, Dalamaga Maria, Kotsi Evangelia, Kargioti Sofia, Adamidis Nikolaos, Karampela Irene, Mourouzis Iordanis, Kounatidis Dimitris
Fourth Department of Internal Medicine, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece.
First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece.
Biomolecules. 2024 Dec 20;14(12):1637. doi: 10.3390/biom14121637.
Cardiovascular disease (CVD) remains a leading global health concern, with atherosclerosis being its principal cause. Standard CVD treatments primarily focus on mitigating cardiovascular (CV) risk factors through lifestyle changes and cholesterol-lowering therapies. As atherosclerosis is marked by chronic arterial inflammation, the innate and adaptive immune systems play vital roles in its progression, either exacerbating or alleviating disease development. This intricate interplay positions the immune system as a compelling therapeutic target. Consequently, immunomodulatory strategies have gained increasing attention, though none have yet reached widespread clinical adoption. Safety concerns, particularly the suppression of host immune defenses, remain a significant barrier to the clinical application of anti-inflammatory therapies. Recent decades have revealed the significant role of adaptive immune responses to plaque-associated autoantigens in atherogenesis, opening new perspectives for targeted immunological interventions. Preclinical models indicate that vaccines targeting specific atherosclerosis-related autoantigens can slow disease progression while preserving systemic immune function. In this context, numerous experimental studies have advanced the understanding of vaccine development by exploring diverse targeting pathways. Key strategies include passive immunization using naturally occurring immunoglobulin G (IgG) antibodies and active immunization targeting low-density lipoprotein cholesterol (LDL-C) and apolipoproteins, such as apolipoprotein B100 (ApoB100) and apolipoprotein CIII (ApoCIII). Other approaches involve vaccine formulations aimed at proteins that regulate lipoprotein metabolism, including proprotein convertase subtilisin/kexin type 9 (PCSK9), cholesteryl ester transfer protein (CETP), and angiopoietin-like protein 3 (ANGPTL3). Furthermore, the literature highlights the potential for developing non-lipid-related vaccines, with key targets including heat shock proteins (HSPs), interleukins (ILs), angiotensin III (Ang III), and a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS-7). However, translating these promising findings into safe and effective clinical therapies presents substantial challenges. This review provides a critical evaluation of current anti-atherosclerotic vaccination strategies, examines their proposed mechanisms of action, and discusses key challenges that need to be overcome to enable clinical translation.
心血管疾病(CVD)仍然是全球主要的健康问题,动脉粥样硬化是其主要病因。标准的心血管疾病治疗主要集中在通过改变生活方式和降低胆固醇疗法来减轻心血管(CV)危险因素。由于动脉粥样硬化的特征是慢性动脉炎症,先天免疫系统和适应性免疫系统在其进展过程中起着至关重要的作用,它们既可能加剧疾病发展,也可能缓解疾病发展。这种复杂的相互作用使免疫系统成为一个极具吸引力的治疗靶点。因此,免疫调节策略越来越受到关注,尽管目前尚无一种策略得到广泛的临床应用。安全性问题,尤其是对宿主免疫防御的抑制,仍然是抗炎疗法临床应用的重大障碍。近几十年来,适应性免疫反应对斑块相关自身抗原在动脉粥样硬化发生中的重要作用逐渐显现,为靶向免疫干预开辟了新的视角。临床前模型表明,针对特定动脉粥样硬化相关自身抗原的疫苗可以在保留全身免疫功能的同时减缓疾病进展。在此背景下,众多实验研究通过探索不同的靶向途径,加深了对疫苗开发的理解。关键策略包括使用天然存在的免疫球蛋白G(IgG)抗体进行被动免疫,以及针对低密度脂蛋白胆固醇(LDL-C)和载脂蛋白(如载脂蛋白B100(ApoB100)和载脂蛋白CIII(ApoCIII))进行主动免疫。其他方法涉及针对调节脂蛋白代谢的蛋白质的疫苗制剂,包括前蛋白转化酶枯草溶菌素/kexin 9型(PCSK9)、胆固醇酯转运蛋白(CETP)和血管生成素样蛋白3(ANGPTL3)。此外,文献强调了开发非脂质相关疫苗的潜力,关键靶点包括热休克蛋白(HSPs)、白细胞介素(ILs)、血管紧张素III(Ang III)以及含血小板反应蛋白基序的解聚素和金属蛋白酶7(ADAMTS-7)。然而,将这些有前景的研究结果转化为安全有效的临床疗法面临着巨大挑战。本综述对当前的抗动脉粥样硬化疫苗策略进行了批判性评估,研究了其提出的作用机制,并讨论了实现临床转化需要克服的关键挑战。