Suppr超能文献

利用高光谱成像技术和化学计量学测定菊花茶(贡菊)中的生物活性成分

Determination of Bioactive Components in Chrysanthemum Tea (Gongju) Using Hyperspectral Imaging Technique and Chemometrics.

作者信息

Wei Yunpeng, Hu Huiqiang, Yuan Minghua, Xu Huaxing, Mao Xiaobo, Zhao Yuping, Huang Luqi

机构信息

School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China.

Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou 450001, China.

出版信息

Foods. 2024 Dec 21;13(24):4145. doi: 10.3390/foods13244145.

Abstract

The bioactive components of chrysanthemum tea are an essential indicator in evaluating its nutritive and commercial values. Combining hyperspectral imaging (HSI) with key wavelength selection and pattern recognition methods, this study developed a novel approach to estimating the content of bioactive components in chrysanthemums, including the total flavonoids (TFs) and chlorogenic acids (TCAs). To determine the informative wavelengths of hyperspectral images, we introduced a variable similarity regularization term into particle swarm optimization (denoted as VSPSO), which can focus on improving the combinatorial performance of key wavelengths and filtering out the features with higher collinearity simultaneously. Moreover, considering the underlying relevance of the phytochemical content and the exterior morphology characteristics, the spatial image features were also extracted. Finally, an ensemble learning model, LightGBM, was established to estimate the TF and TCA contents using the fused features. Experimental results indicated that the proposed VSPSO achieved a superior accuracy, with R scores of 0.9280 and 0.8882 for TF and TCA prediction. Furthermore, after the involvement of spatial image information, the fused spectral-spatial features achieved the optimal model accuracy on LightGBM. The R scores reached 0.9541 and 0.9137, increasing by 0.0308-0.1404 and 0.0181-0.1066 in comparison with classical wavelength-related methods and models. Overall, our research provides a novel method for estimating the bioactive components in chrysanthemum tea accurately and efficiently. These discoveries revealed the potential effectiveness for constructing feature fusion in HSI-based practical applications, such as nutritive value evaluation and heavy metal pollution detection, which will also facilitate the development of quality detection in the food industry.

摘要

菊花茶的生物活性成分是评估其营养价值和商业价值的重要指标。本研究将高光谱成像(HSI)与关键波长选择和模式识别方法相结合,开发了一种估算菊花中生物活性成分含量的新方法,这些成分包括总黄酮(TFs)和绿原酸(TCAs)。为了确定高光谱图像的信息波长,我们将可变相似性正则化项引入粒子群优化算法(记为VSPSO),该算法能够专注于提高关键波长的组合性能,同时滤除共线性较高的特征。此外,考虑到植物化学成分与外部形态特征之间的潜在相关性,还提取了空间图像特征。最后,建立了一个集成学习模型LightGBM,利用融合特征估算TF和TCA的含量。实验结果表明,所提出的VSPSO算法具有较高的预测精度,TF和TCA预测的R值分别为0.9280和0.8882。此外,引入空间图像信息后,融合后的光谱-空间特征在LightGBM上实现了最优的模型精度。R值分别达到0.9541和0.9137,与传统的基于波长的方法和模型相比,分别提高了0.0308 - 0.1404和0.0181 - 0.1066。总体而言,我们的研究提供了一种准确、高效地估算菊花茶中生物活性成分的新方法。这些发现揭示了在基于HSI的实际应用中构建特征融合的潜在有效性,如营养价值评估和重金属污染检测,这也将促进食品工业质量检测的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea4/11675642/ee9afca9b6d8/foods-13-04145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验