Fedai Halil, Sariisik Gencay, Toprak Kenan, Taşcanov Mustafa Beğenç, Efe Muhammet Mucip, Arğa Yakup, Doğanoğulları Salih, Gez Sedat, Demirbağ Recep
Department of Cardiology, Harran University Faculty of Medicine, Şanlıurfa 63300, Turkey.
Department of Industrial Engineering, Harran University Faculty of Engineering, Şanlıurfa 63300, Turkey.
Diagnostics (Basel). 2024 Dec 14;14(24):2813. doi: 10.3390/diagnostics14242813.
Acute myocardial infarction (AMI) constitutes a major health problem with high mortality rates worldwide. In patients with ST-segment elevation myocardial infarction (STEMI), no-reflow phenomenon is a condition that adversely affects response to therapy. Previous studies have demonstrated that the CALLY index, calculated using C-reactive protein (CRP), albumin, and lymphocytes, is a reliable indicator of mortality in patients with non-cardiac diseases. The objective of this study is to investigate the potential utility of the CALLY index in detecting no-reflow patients and to determine the predictability of this phenomenon using machine learning (ML) methods.
This study included 1785 STEMI patients admitted to the clinic between January 2020 and June 2024 who underwent percutaneous coronary intervention (PCI). Patients were in no-reflow status, and other clinical data were analyzed. The CALLY index was calculated using data on patients' inflammatory status. The Extreme Gradient Boosting (XGBoost) ML algorithm was used for no-reflow prediction.
No-reflow was detected in a proportion of patients participating in this study. The model obtained with the XGBoost algorithm showed high accuracy rates in predicting no-reflow status. The role of the CALLY index in predicting no-reflow status was clearly demonstrated.
The CALLY index has emerged as a valuable tool for predicting no-reflow status in STEMI patients. This study demonstrates how machine learning methods can be effective in clinical applications and paves the way for innovative approaches for the management of no-reflow phenomenon. Future research needs to confirm and extend these findings with larger sample sizes.
急性心肌梗死(AMI)是一个全球性的重大健康问题,死亡率很高。在ST段抬高型心肌梗死(STEMI)患者中,无复流现象是一种对治疗反应产生不利影响的情况。先前的研究表明,使用C反应蛋白(CRP)、白蛋白和淋巴细胞计算得出的CALLY指数是预测非心脏疾病患者死亡率的可靠指标。本研究的目的是探讨CALLY指数在检测无复流患者中的潜在效用,并使用机器学习(ML)方法确定该现象的可预测性。
本研究纳入了2020年1月至2024年6月期间在诊所接受经皮冠状动脉介入治疗(PCI)的1785例STEMI患者。对处于无复流状态的患者及其他临床数据进行分析。利用患者炎症状态数据计算CALLY指数。采用极端梯度提升(XGBoost)机器学习算法进行无复流预测。
在参与本研究的部分患者中检测到了无复流现象。使用XGBoost算法获得的模型在预测无复流状态方面显示出较高的准确率。CALLY指数在预测无复流状态中的作用得到了明确证明。
CALLY指数已成为预测STEMI患者无复流状态的一个有价值的工具。本研究展示了机器学习方法在临床应用中如何发挥有效作用,并为无复流现象的创新管理方法铺平了道路。未来的研究需要用更大的样本量来证实和扩展这些发现。