Suppr超能文献

多目标优化加速了用于……的抗菌肽的从头设计。 (原文结尾不完整)

Multi-Objective Optimization Accelerates the De Novo Design of Antimicrobial Peptide for .

作者信息

Yang Cheng-Hong, Chen Yi-Ling, Cheung Tin-Ho, Chuang Li-Yeh

机构信息

Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan.

Department of Information Management, Tainan University of Technology, Tainan 710302, Taiwan.

出版信息

Int J Mol Sci. 2024 Dec 21;25(24):13688. doi: 10.3390/ijms252413688.

Abstract

Humans have long used antibiotics to fight bacteria, but increasing drug resistance has reduced their effectiveness. Antimicrobial peptides (AMPs) are a promising alternative with natural broad-spectrum activity against bacteria and viruses. However, their instability and hemolysis limit their medical use, making the design and improvement of AMPs a key research focus. Designing antimicrobial peptides with multiple desired properties using machine learning is still challenging, especially with limited data. This study utilized a multi-objective optimization method, the non-dominated sorting genetic algorithm II (NSGA-II), to enhance the physicochemical properties of peptide sequences and identify those with improved antimicrobial activity. Combining NSGA-II with neural networks, the approach efficiently identified promising AMP candidates and accurately predicted their antibacterial effectiveness. This method significantly advances by optimizing factors like hydrophobicity, instability index, and aliphatic index to improve peptide stability. It offers a more efficient way to address the limitations of AMPs, paving the way for the development of safer and more effective antimicrobial treatments.

摘要

人类长期以来一直使用抗生素来对抗细菌,但日益增加的耐药性降低了它们的有效性。抗菌肽(AMPs)是一种有前景的替代物,具有针对细菌和病毒的天然广谱活性。然而,它们的不稳定性和溶血作用限制了它们的医学应用,使得抗菌肽的设计和改进成为关键的研究重点。利用机器学习设计具有多种期望特性的抗菌肽仍然具有挑战性,尤其是在数据有限的情况下。本研究采用了一种多目标优化方法,即非支配排序遗传算法II(NSGA-II),来增强肽序列的物理化学性质,并识别出具有增强抗菌活性的肽序列。将NSGA-II与神经网络相结合,该方法有效地识别出有前景的抗菌肽候选物,并准确预测它们的抗菌有效性。通过优化诸如疏水性、不稳定性指数和脂肪族指数等因素来提高肽的稳定性,该方法取得了显著进展。它为解决抗菌肽的局限性提供了一种更有效的方法,为开发更安全、更有效的抗菌治疗方法铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09da/11728188/12c925882da5/ijms-25-13688-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验