Pei Guangzhao, Xiao Dingjun, Zhang Miaomiao, Jiang Jiajie, Xie Jiping, Li Xiongzi, Guo Junbo
Department of Mining Engineering, School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China.
Materials (Basel). 2024 Dec 22;17(24):6275. doi: 10.3390/ma17246275.
This study examines the crack resistance of basalt-fiber-reinforced concrete (BFRC) materials subjected to freeze-thaw cycles (FTCs). We utilized a φ50 mm Split Hopkinson Pressure Bar (SHPB) apparatus alongside numerical simulations to carry out impact compression tests at a velocity of 5 m/s on BFRC specimens that experienced 0, 10, 20, and 30 FTCs. Additionally, we investigated the effects of basalt fiber (BF) orientation position and length on stress intensity factors. The results reveal that with an increasing number of FTCs, the dynamic crack propagation speed of BFRC with a prefabricated crack inclined at 0° rises from 311.84 m/s to 449.92 m/s, while its pure I fracture toughness decreases from 0.6266 MPa·m to 0.4902 MPa·m. For BFRC specimens with a prefabricated crack inclination of 15°, the dynamic crack propagation speed increases from 305.81 m/s to 490.02 m/s, accompanied by a reduction in mode I fracture toughness from 0.3901 MPa·m to 0.2867 MPa·m and mode II fracture toughness from 0.6266 MPa·m to 0.4902 MPa·m. In the case of a prefabricated crack inclination of 28.89°, the dynamic crack propagation speed rises from 436.10 m/s to 494.28 m/s, while its pure mode II fracture toughness decreases from 1.1427 MPa·m to 0.7797 MPa·m. Numerical simulations indicate that fibers positioned ahead of the crack tip-especially those that are longer, located closer to the crack tip, and oriented more perpendicularly-significantly reduce the mode I stress intensity factor. However, these fibers have a minimal impact on reducing the mode II stress intensity factor. The study qualitatively and quantitatively analyzes the crack resistance of basalt-fiber-reinforced concrete in relation to freeze-thaw cycles and the fibers ahead of the crack tip, offering insights into the fiber reinforcement effects within the concrete matrix.
本研究考察了经历冻融循环(FTCs)的玄武岩纤维增强混凝土(BFRC)材料的抗裂性能。我们使用了一台φ50 mm的分离式霍普金森压杆(SHPB)装置并结合数值模拟,以5 m/s的速度对经历了0、10、20和30次冻融循环的BFRC试件进行冲击压缩试验。此外,我们研究了玄武岩纤维(BF)的取向位置和长度对应力强度因子的影响。结果表明,随着冻融循环次数的增加,预制裂纹倾斜角度为0°的BFRC的动态裂纹扩展速度从311.84 m/s上升到449.92 m/s,而其纯I型断裂韧性从0.6266 MPa·m降低到0.4902 MPa·m。对于预制裂纹倾斜角度为15°的BFRC试件,动态裂纹扩展速度从305.81 m/s增加到490.02 m/s,同时I型断裂韧性从0.3901 MPa·m降低到0.2867 MPa·m,II型断裂韧性从0.6266 MPa·m降低到0.4902 MPa·m。在预制裂纹倾斜角度为28.89°的情况下,动态裂纹扩展速度从436.10 m/s上升到494.28 m/s,而其纯II型断裂韧性从1.1427 MPa·m降低到0.7797 MPa·m。数值模拟表明,位于裂纹尖端前方的纤维——尤其是那些更长、更靠近裂纹尖端且取向更垂直的纤维——能显著降低I型应力强度因子。然而,这些纤维对降低II型应力强度因子的影响极小。该研究定性和定量地分析了玄武岩纤维增强混凝土在冻融循环及裂纹尖端前方纤维方面的抗裂性能,为混凝土基体中的纤维增强效果提供了见解。