Suppr超能文献

色谱方法开发的分析质量源于设计框架中实验设计与数据处理的重要方面。

Important Aspects of the Design of Experiments and Data Treatment in the Analytical Quality by Design Framework for Chromatographic Method Development.

作者信息

Passerine Bianca F G, Breitkreitz Márcia C

机构信息

Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, SP, Brazil.

出版信息

Molecules. 2024 Dec 23;29(24):6057. doi: 10.3390/molecules29246057.

Abstract

In the analytical quality by design (AQbD) framework, the design of experiments (DOE) plays a very important role, as it provides information about how experimental input variables influence critical method attributes. Based on the information obtained from the DOE, mathematical models are generated and used to build the method operable design region (MODR), which is a robust region of operability. Data treatment steps are usually carried out in software such as Fusion QbD, Minitab, or StaEase 360, among others. Although there are many studies in the literature that use the DOE, none of them address important aspects of data treatment for optimization and MODR generation and compare different software calculations. The purpose of this study is to contribute to a better understanding of data treatment aspects that are frequently misread or not fully understood, such as model selection, ANOVA results, and residual analysis. The discussion will be guided by the separation of curcuminoids, using ultra-high performance liquid chromatography and eight quality attributes as responses. This study highlights the importance of carefully selecting and evaluating models, as they significantly influence the generation of the MODR. Moreover, the findings emphasize that it is essential to incorporate uncertainties into the contour plots to accurately determine the MODR in compliance with the ICH Q14 guidelines and USP General Chapter <1220>.

摘要

在质量源于设计(AQbD)框架中,实验设计(DOE)起着非常重要的作用,因为它提供了有关实验输入变量如何影响关键方法属性的信息。基于从DOE获得的信息,生成数学模型并用于构建方法可操作设计区域(MODR),这是一个稳健的可操作区域。数据处理步骤通常在诸如Fusion QbD、Minitab或StaEase 360等软件中进行。尽管文献中有许多使用DOE的研究,但它们都没有涉及优化和MODR生成的数据处理的重要方面,也没有比较不同软件的计算。本研究的目的是有助于更好地理解经常被误读或未被充分理解的数据处理方面,如模型选择、方差分析结果和残差分析。讨论将以姜黄素类化合物的分离为指导,使用超高效液相色谱法并将八个质量属性作为响应。本研究强调了仔细选择和评估模型的重要性,因为它们对MODR的生成有重大影响。此外,研究结果强调,必须将不确定性纳入等高线图,以便根据ICH Q14指南和美国药典通则<1220>准确确定MODR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3592/11678043/cf1a09167562/molecules-29-06057-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验