Khan Iftikhar, Edes Kaylome, Alsaadi Ismail, Al-Khaial Mohammed Q, Bnyan Ruba, Khan Saeed A, Sadozai Sajid K, Khan Wasiq, Yousaf Sakib
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
College of Pharmacy, University of Al Maarif, Al Anbar 31001, Iraq.
Pharmaceutics. 2024 Dec 1;16(12):1541. doi: 10.3390/pharmaceutics16121541.
Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.
Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).
Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations. Drug delivery of the formulations was assessed using a dry powder inhaler (DPI) in combination with a next-generation impactor (NGI).
Upon analysis, formulations F6 (SD-mannitol), F15 (SD-trehalose), and F20 (SD-LMH) demonstrated high production yields (84.01 ± 3.25, 72.55 ± 5.42, and 70.03 ± 3.39%, respectively), small particle sizes (2.96 ± 1.42, 4.55 ± 0.46, and 5.16 ± 1.32 µm, respectively) and low moisture contents (0.25 ± 0.03, 3.76 ± 0.75, and 1.99 ± 0.77%). These SD optimized parameters were then employed for SDP formulations employing dimyristoly phosphatidylcholine (DMPC) as a phospholipid and beclomethasone dipropionate (BDP) as the model drug. Upon spray drying, SDP-mannitol provided the highest production yield (82.45%) and smallest particle size (2.64 µm), as well as high entrapment efficiency (98%) and a high fine particle dose, fine particle fraction, and respirable fraction (285.81 µg, 56.84%, 86.44%, respectively).
The study results are a promising step in the optimization of the large-scale manufacture of proliposome formulations and highlight the versatility of the instrument and variability of formulation properties with respect to the carriers employed for targeting the pulmonary system using dry powder inhalers.
喷雾干燥虽是常用于粉末制剂的技术,但在大规模制备前体脂质体方面应用有限。
因此,本研究旨在探究针对单个碳水化合物载体(海藻糖、一水乳糖(LMH)和甘露醇)的喷雾干燥参数,如进口温度(80、120、160和200℃)、气流速率(357、473和601L/h)以及泵进料速率(5%、15%和25%),用于24种喷雾干燥(SD)制剂(F1 - F24)。
优化后,基于相同载体对前体脂质体制剂进行喷雾干燥参数试验,并将其命名为喷雾干燥前体脂质体(SDP)制剂。使用干粉吸入器(DPI)结合下一代撞击器(NGI)评估制剂的药物递送情况。
经分析,制剂F6(SD - 甘露醇)、F15(SD - 海藻糖)和F20(SD - LMH)表现出高产率(分别为84.01±3.25%、72.55±5.42%和70.03±3.39%)、小粒径(分别为2.96±1.42μm、4.55±0.46μm和5.16±1.32μm)以及低水分含量(分别为0.25±0.03%、3.76±0.75%和1.99±0.77%)。然后将这些优化后的SD参数用于以二肉豆蔻酰磷脂酰胆碱(DMPC)为磷脂、丙酸倍氯米松(BDP)为模型药物的SDP制剂。喷雾干燥后,SDP - 甘露醇具有最高产率(82.45%)和最小粒径(2.64μm),以及高包封率(98%)和高细颗粒剂量、细颗粒分数和可吸入分数(分别为285.81μg、56.84%、86.44%)。
研究结果是前体脂质体制剂大规模制备优化中很有前景的一步,突出了该仪器的多功能性以及制剂性质相对于用于通过干粉吸入器靶向肺部系统的载体的变异性。